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Abstract

The behavior of geometric phase elements illuminated with partially polarized monochromatic beams is investigated both theoretically
and experimentally. The element discussed in this paper is composed of wave plates with p-retardation and a space-variant orientation angle.
We found that a beam emerging from such an element comprises two polarization orders; right-and left-handed circularly polarized states
with conjugate geometric phase modification. This phase equals twice the orientation angle of the space-variant wave plate comprising the
element. Apart from the two polarization orders, the emerging beam coherence polarization matrix includes a ‘‘vectorial interference
matrix’’ which contains information concerning the correlation between the two orthogonal, circularly polarized portions of the incident
beam. In this paper we measure this correlation by a simple interference experiment. In addition, we found that the equivalent mutual inten-
sity of the emerging beam is modulated according to the geometric phase induced by the element. Other interesting phenomena concerning
propagation will be discussed theoretically and demonstrated experimentally. The experiment made use of a spherical geometric phase ele-
ment that was realized by use of a space-variant subwavelength grating illuminated with CO2 laser radiation of 10.6 lm wavelength.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

When the polarization state of a beam traverses a close
loop on the Poincaré sphere, the beam acquires a phase
equal to half the area enclosed by the loop. This phase
modification, which is described as a geometric phase, was
investigated by Pancharatnam in the 1950s [1–3] and later
on by Berry in the 1980s in the context of quantum systems
[3,4]. Most of the papers which investigated the geometric
phase considered the evolution of the phase over time [1–5].
The phase was initially generated by placing polarization
elements, such as wave plates or polarizers, in sequence;
the phase was then detected by the interference of the
resulting beam with the incident beam. However, the polar-
ization state of the manipulated beam is considered to
be space-invariant. Geometric phase in the space domain
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has been theoretically investigated. Bhandari, for example,
proposed the formation of a quadratic geometric phase by
use of spatially rotating wave plates [6]. This phase was
also demonstrated experimentally using different realiza-
tion methods. Frins et al. and Zhen et al. proposed forming
space-variant geometric phase elements by joining birefrin-
gent plates in different spatial orientations [7,8]. Such ele-
ments were also designed utilizing polarization recording
media (e.g., bacteriorhodopsin) [9]. Recently, we proposed
generating a geometric phase front based on a space-vari-
ant subwavelength dielectric grating [1,10–18]. Subwave-
length gratings have opened new methods for forming
beams with sophisticated phase and polarization distribu-
tions [19–21]. Using the above methods, elements with spa-
tially varying wave plate orientations and of constant
retardation were realized [22–24]. These elements form
space-variant polarization state manipulation, which even-
tually leads to the geometric phase modification. Such ele-
ments are referred to as Pancharatnam–Berry phase optical
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Fig. 1. Schematic presentation of a geometric phase element illuminated
by a beam with a BCP matrix Jin. The three emerging polarization orders
are denoted by L, R, Jin. (b) Concept of the multi-focal polarization-
dependant lens achieved by combining the PBOE with a positive refractive
lens. Insets show measured diffraction-limited spots for each focal plane.
(c) Illustration of a magnified geometry of a PBOE lens mask with 4
discrete levels (N = 4).
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elements (PBOEs). PBOEs have been exploited for near-
field and far-field polarimetry [12,13], beam-splitting [14],
encryption [15], polarization-dependant lenses [16], and
have also been used in the formation of vectorial vortices
[17,18]. In another application, space-domain geometric
phase was used for nulling interferometry to detect a faint
light source near a bright one [25].

The above mentioned studies were limited to the case of
fully polarized illumination [1–11,14–18]. This naturally
leads one to ask how a partially polarized beam behaves
when transmitted through a geometric phase-induced ele-
ment (PBOE), and what the propagation properties of this
beam are when it emerges from such an element? Specifi-
cally, how do the intensity, the degree of polarization and
the coherence of the beam depend on the transmission
through the PBOE, and how are they affected afterwards
on propagation through free space?

In this paper we investigate the optical properties of
polarization-dependent geometric phase elements with par-
tially polarized light. The analysis of a partially polarized
monochromatic beam is performed using the beam coher-
ence polarization (BCP) matrix formalism [13,26–28]. The
ensuing propagation of the partially polarized beam in free
space is analyzed by use of the extended van-Cittert Zer-
nike integral [13,28]. By using the above formalism, we
found that when a partially polarized beam is incident
upon a p-retardation PBOE, the emerging beam comprises
two polarization orders; right- and left-handed circularly
polarized states with conjugate geometric phase modifica-
tion. This phase equals twice the orientation angle of the
space-variant wave plates comprising the PBOE. The inten-
sity of the right (left)-handed circularly polarized order,
RCP (LCP), equals the amount of the left (right)-handed
circularly polarized portion of the incident beam. Apart
from the BCPs of the two polarization orders, the emerging
BCP comprises another matrix, which we term the ‘‘vecto-
rial interference matrix’’. This matrix contains the informa-
tion concerning the correlation between the RCP and LCP
portions of the incident beam. The matrix distinguishes, for
example, between an incident beam with a linearly polar-
ized state versus an unpolarized state. In this paper we
measure this correlation by transmitting the beam emerg-
ing from the PBOE through a polarizer-analyzer.

Furthermore, we find that while the intensity and
degree of polarization are invariant upon transmission
through a PBOE, the equivalent mutual intensity of the
emerging beam is modulated according to the geometric
phase induced by the PBOE. Other interesting phenomena
regarding propagation will be discussed theoretically and
experimentally demonstrated.

The theoretical analysis as well as the experimental
results are investigated on a polarization-dependent PBOE
lens. This lens focuses incoming light at different distances,
depending on the polarization state as can be seen in
Fig. 1(a) [16]. The intensities of the focal spots depend on
the incident polarization state as will be shown experimen-
tally for fully and partially polarized incident beams. The
analysis of partially polarized illumination upon a geomet-
ric phase element is elaborated in Section 2. In Section 3 we
describe the design and realization procedures for a PBOE
using space-variant subwavelength dielectric gratings. In
Section 4 we present the experimental results for the geo-
metric phase multi-focal lens achieved by a PBOE. Section
5 is devoted to concluding remarks.

2. Theoretical analysis

The analysis of partially polarized, quasi-monochro-
matic beams is conveniently performed by use of the
BCP matrix calculus [13,26–28]. This formalism is derived
from the more general case, the unified theory of coherence
and polarization, which was developed by Wolf [29–34].
Assuming a beam propagating along the ẑ axis, the 2 · 2
BCP matrix for a plane at constant z is defined as,
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Jðq1; q2; zÞ ¼
jRRðq1; q2; zÞ jRLðq1; q2; zÞ
jLRðq1; q2; zÞ jLLðq1; q2; zÞ

� �
; ð1Þ

where jabðq1; q2; zÞ ¼ hE�aðq1; zÞEbðq2; zÞi, a, b = R, L and
q1, q2 are the transverse position vectors. The angle brack-
ets denote time average, Ea(q,z) is the helical basis compo-
nent of the electric field, and R and L denote the RCP and
LCP states, respectively. The intensity of the beam, I, and
the degree of polarization (DOP), P, can be calculated di-
rectly from this matrix [13,26–28,30–34]:

Iðq; zÞ ¼ trfJðq; q; zÞg;

P ðq; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 detfJðq; q; zÞg
½trfJðq; q; zÞg�2

s
;

ð2Þ

where tr{} and det{} are the trace and the determinant of
the matrix within the curl brackets. The DOP represents
the ratio of the intensity of the polarized fraction’s beam
to the total intensity. It ranges from 1, when the beam is
fully polarized, to 0 when the beam is unpolarized. We
are interested in investigating beams emerging from a
PBOE that are partially polarized.

PBOE is a rotating wave plate with a constant retarda-
tion /, and a space-variant orientation function, h(q). The
transmission Jones matrix of a non-absorbing, non-scatter-
ing PBOE is given by

T ¼ expði/=2Þ cosð/=2Þ
1 0

0 1

� ��

�i sinð/=2Þ
0 exp½i2hðqÞ�

exp½�i2hðqÞ� 0

� ��
: ð3Þ

The calculation of this transmission matrix is given in
Appendix A. When a partially polarized beam is incident
on the PBOE, the BCP matrix of the emerging beam is cal-
culated as [13,26–28]

Joutðq1; q2; z ¼ 0Þ ¼ Tþðq1ÞJinTðq2Þ; ð4Þ
where Jin is the incident BCP matrix defined by Eq. (1). By
substituting the Jones matrix from Eq. (3) into Eq. (4), the
emerging BCP matrix obtained is

Jout ¼ g0Jin þ g1jLLef2i½hðq1Þ�hðq2Þ�gR

þ g1jRRef�2i½hðq1Þ�hðq2Þ�gLþ C; ð5Þ

where g0 = cos2(//2), g1 = sin2(//2) and R ¼ 1 0
0 0

� �
;

L ¼ 0 0
0 1

� �
are the BCP matrices for RCP and LCP

states, and the matrix, C, is provided in Appendix B. From
Eq. (5) it is evident that the emerging BCP matrix com-
prises three polarization orders. The first order maintains
the BCP matrix of the incident beam, the second order is
a RCP beam with a space-variant phase modification,
whereas the third order has a polarization direction and
spatial phase dependence opposite in sign to that of the sec-
ond one. The efficiency of the polarization orders depends
on the PBOE transmission properties (g0,g1) and on the
incident polarization state (jLL, jRR). Apart from the three
orders, the emerging BCP matrix in Eq. (5) also comprises
a matrix denoted by C. This matrix, which we denote as the
vectorial interference matrix, contains the information
about the correlation between the right and left-handed cir-
cularly polarized components of the incident beam. The
matrix C and its properties are discussed in Appendix B.
We choose to limit our discussion to a PBOE having retar-
dation / = p. In this case g0 = 0, g1 = 1 and Eq. (5) degen-
erates to,

Jout ¼ jLLef2i½hðq1Þ�hðq2Þ�gRþ jRRef�2i½hðq1Þ�hðq2Þ�gLþ Cp; ð6Þ
where Cp is given by (see Appendix B),

Cp ¼
0 jLRei2h½ðq1Þþhðq2Þ�

jRLe�i2h½ðq1Þþhðq2Þ� 0

 !
: ð7Þ

It is evident from Eq. (6) that the first polarization order
disappears and the above expression then comprises only
two polarization orders with the corresponding phase mod-
ification. As this phase is created by a polarization manip-
ulation by the element, it is geometric in nature [1,2]. To
confirm this, we introduce the specific case of a plane wave
with a RCP state (i.e., Jin = R) incident on our PBOE. For
such illumination, the matrix Cp is zero, and the resulting
BCP is

Jout ¼ expf�2i½hðq1Þ � hðq2Þ�gL: ð8Þ
In this case, the polarization of the incident beam is sub-
jected to complete polarization state conversion, i.e., the
right-handed circularly polarized incident beam becomes
a left-handed circularly polarized. An important feature
of Eq. (8) is the added phase factor, 2[h(q1) � h(q2)], that
is determined by the difference between two local orienta-
tions of the rotating wave plate composing the PBOE. This
dependence originates solely from the local changes in the
polarization state of the emerging beam. In order to verify
this dependence, we choose to employ the Poincaré sphere
presentation. The Poincaré sphere is a unit sphere with the
Stokes parameters S1, S2 and S3 as its three axes (see Fig. 2)
[35]. In this presentation, a polarization state can be
mapped to a specific point on the sphere [1–6,10,11],
whereas polarization state manipulation is represented by
a path connecting the initial and final polarization states
(points). When the polarization state of a beam traverses
a close loop on the Poincaré sphere, a phase that equals
half of the enclosed area is added to the beam [35]. There-
fore, this phase can be regarded as a geometric phase
[1,2,6,10,11]. In the described example, the polarization
state of the emerging beam at two distinct points on the ele-
ment travel along two geodesic lines, as depicted in Fig. 2.
The separation of these lines equals the angle difference be-
tween the wave plates’ orientations at these two points.
Particularly for polarization state changes at q1 and q2,
the angular separation of the related geodesic lines and
consequently, half the area enclosed by them will be
2[h(q1) � h(q2)], which is exactly the phase modification
as described in Eq. (8). The relation between the enclosed
area and the angular separation can be derived by simple
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Fig. 3. Illustration of the Young interference experiment for a space-
variant polarization field. The visibility of the fringes varies as a function
of the two points selected in the transverse plane.
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Fig. 2. Illustration of the principle of PBOEs using a Poincaré sphere.
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geometric calculations [35]. Note that the geometric phase
is not dependent on the incident wavelength. Illuminating
the same element with Jin = L will result in a RCP emerg-
ing beam with a phase modification opposite in sign to the
one written in Eq. (8).

The above discussion regarding the geometric phase
considers two specific cases of fully polarized light. How-
ever, we need to know how unpolarized light behaves when
transmitted through a geometric phase element. In this
case, Jin is a unit matrix, and the emerging BCP matrix is
calculated from Eq. (6) to yield,

JUNP
out ¼ ef2i½hðq1Þ�hðq2Þ�gRþ ef�2i½hðq1Þ�hðq2Þ�gL: ð9Þ

Note that the polarization orders R and L result in equal
efficiencies and conjugate geometric phase modifications.
It is known that the unpolarized light can be generated
by combining two uncorrelated beams with any orthogonal
polarization states. However, the above outcome indicates
that the PBOE acts on an unpolarized incident paraxial
beam as if it were an incoherent superposition of RCP
and LCP beams particularly. The general case of partially
polarized beam with intensity I (see Eq. (2)) can be repre-
sented as a weighted sum of fully polarized and unpolar-
ized light [35], i.e.,

Jin ¼
I
2
½PJP

in þ ð1� P ÞJUNP
in �; ð10Þ

where JUNP
in ¼ 1 0

0 1

� �
is the unpolarized fraction of the

beam, JP
in ¼

jRR
P jRL

P

jLR
P jLL

P

� �
is denoted as the polarized frac-

tion, and,

jab
P ¼

2
I�P jab for a 6¼ b;

2
I �P jab � 1�P

P for a ¼ b:

(
ð11Þ

The BCP of the beam immediately after the element can be
also decomposed into its polarized and unpolarized frac-
tions. It can be shown that by applying JP
in and JUNP

in sepa-

rately into Eq. (6), result in JP
out and JUNP

out , which are the
polarized and the unpolarized fractions of the emerging
beam. Therefore, the transmission of each fraction through
the element can be treated separately, i.e. the PBOE is a lin-
ear system as expected. The resulting BCP will have the
form of,

Jout ¼
I
2
½PJP

out þ ð1� P ÞJUNP
out �; ð12Þ

where the BCP of the polarized fraction is given by,

JP
out ¼ jLL

P ef2i½hðq1Þ�hðq2Þ�gRþ jRR
P ef�2i½hðq1Þ�hðq2Þ�gLþ 2

I � P C:

ð13Þ
This result indicates that the polarized fraction of a beam is
divided into polarization orders according to its RCP and
LCP components, as can be seen from Eq. (13), and ac-
quires conjugate geometric phase modifications. However,
the unpolarized fraction is equally divided into RCP and
LCP states with the appropriate geometric phases (see
Eq. (9)).

Calculating the DOP and the intensity of a beam emerg-
ing from a p-retardation PBOE is carried out using Eq. (2).
From this equation we find that these properties are equal
to those of the incident beam, as was expected. This result
is obvious when considering a non-polarizing and non-
absorbing element. Another physical property which can
be studied is the equivalent mutual intensity [26,27,30,31],
l. This property can be obtained from a Young interfer-
ence experiment (see Fig. 3) and is calculated from the
BCP matrix of the beam as,

lðq1; q2; zÞ ¼
trfJðq1; q2; zÞg

½trfJðq1; q1; zÞgtrfJðq2; q2; zÞg�
1=2
: ð14Þ

The absolute value of this quantity is proportional to the
fringe visibility resulting from the experiment; hence, it be-
comes unity when the visibility is maximal and zero when
the fringes disappear. The equivalent mutual intensity as
calculated in Eq. (14) for partially polarized plane wave
illumination results in,

l ¼ A expðiwÞ; ð15aÞ
where
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A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjRRÞ2þðjLLÞ2þ2jRRjLL cos½4hðq1Þ�4hðq2Þ�

q
; ð15bÞ

and

w ¼ a tan
jRR � jLL

jRR þ jLL
tan½2hðq1Þ � 2hðq2Þ�

� �
: ð15cÞ

As can be seen from Eq. (15), in contrast to the DOP and
the intensity, the normalized equivalent mutual intensity, l,
is not conserved upon transmission. For example, unpolar-
ized or partially polarized light in which the polarized frac-
tion is in a linear state will result in,

lðq1; q2; zÞ ¼ cos½2hðq1Þ � 2hðq2Þ�: ð16Þ
From Eq. (16) we see that the equivalent mutual intensity is
a cosine function of the distance between two chosen
points. This observation is not intuitive when considering
transmission through a non-absorbing non-scattering ele-
ment. Nevertheless, this phenomenon can be explained
straightforwardly when conducting a Young interference
experiment with a spatially varying polarized beam. Thus,
as shown in Fig. 3, the interference of two points on the
transverse plane with orthogonal polarization states,
although totally correlated, will result in zero fringe visibil-
ity. On the other hand, two points with the same polariza-
tion state will result in maximum fringe visibility. Another
interesting example would be the illumination of the
p-retardation PBOE with a fully circularly polarized beam.
In this case l is given by

lðq1; q2; zÞ ¼ exp½i2hðq1Þ � i2hðq2Þ�: ð17Þ
Eq. (17) indicates that the visibility of the fringes is always
maximal while their position depends on the distance of the
two points chosen for the Young experiment. In the general
case of partially polarized illumination, l will have both
amplitude and phase oscillations. This means that the vis-
ibility and the position of the fringes resulting from the
Young interference experiment will depend on the choice
of the distance between the two points. Note that the
equivalent mutual intensity in both cases is being modu-
lated according to the geometric phase of the element.

Up to this point we have analyzed the properties of the
beam in the plane immediately after the element. However,
we are also interested in investigating the above properties
throughout propagation. The propagation of a partially
polarized beam’s BCP matrix in a linear and isotropic
media is performed using the extended van-Cittert Zernike
theorem [13,28]. Thus, the resulting BCP matrix elements
are given by,

jab
z ðr1;r2;zÞ¼

Z 1

�1
jab

outðq1;q2;0ÞK�ðr1;q1;zÞKðr2;q2;zÞd2q1d2q2;

ð18Þ

where a and b equal R or L and Kðr; q; zÞ ¼ �i expðikzÞ
k z exp

ik
2z ðr� qÞ2
h i

is the paraxial propagation kernel. k = 2p/k

is the wavenumber and r is the transverse position vector
in the output plane. The intensity at the distance z is calcu-
lated by tracing the resulting BCP matrix (see Eq. (2)).
Therefore the intensity distribution of the propagating
beam is given by,

Iðr; zÞ ¼ 1

ðkzÞ2
Z 1

�1
½jLLe2i½hðq1Þ�hðq2Þ� þ jRRe�2i½hðq1Þ�hðq2Þ��

�

� e
ikðq2

2
�q2

1
Þ

2z K�f 1Kf 2d2q1d2q2

�
r2¼r1

; ð19Þ

where Kfiðri; qiÞ ¼ exp � ik
z ðri � qiÞ

	 

and i = 1, 2. Note that

the expression in the square brackets is the sum of two
intensity terms which correspond to the polarization order
terms found in Eq. (6). As is evident from Eq. (7), the diag-
onal elements of matrix Cp are zero; therefore, none of the
Cp matrix elements is apparent in Eq. (19). For the same
reason we can expect that this matrix will not influence
the equivalent mutual intensity of the propagating beam.
This, however, will not be true for propagation in a polar-
ization-dependant media such as uniaxial crystals or polar-
izers in which a coupling between the BCP matrix elements
takes place.

To demonstrate our analysis of the propagation of par-
tially polarized light, illuminating a geometric phase ele-
ment, we chose a PBOE with a quadratic wave plate
orientation function, i.e.,

hðqÞ ¼ pq2

2kf

����
mod 2pi

; ð20Þ

where f is the focal length and k is the wavelength. Substitut-
ing Eq. (20) into Eq. (19) leads to cancellation of the qua-
dratic phase factor of the first term for z = f and of the
second term for z = �f. Thus, for the case of the RCP plane
wave illumination, the intensity at z = f is found to be,

Iðr1; r2; f Þ ¼
1

ðkf Þ2
dðr1Þdðr2Þ; ð21Þ

where d is the Dirac delta function. Hence, this element
acts like a converging lens for RCP light. Using the same
equation for a LCP incident beam results in diverging lens
behavior. In the case of a finite aperture, the output inten-
sity distribution will be calculated from the convolution of
the far-field with the Fourier transform of the aperture
function.

The focal plane of the PBOE lens is of special interest
when considering the equivalent mutual intensity and the
degree of polarization of the beam. The calculation of the
BCP matrix in this plane is done by substituting Eq. (6) into
Eq. (18) using the quadratic geometric phase written in Eq.
(20). The resulting DOP, which is calculated by Eq. (2) from
this BCP matrix equals unity throughout the focal plane
(z = f). Similarly, the amplitude of the equivalent mutual
intensity equals unity for every pair of points on this plane
excluding the point r = 0. The results are the same regard-
less of the polarization state of the incident beam. These
results are remarkable if one keeps in mind that the equiv-
alent mutual intensity in the plane immediately after the
PBOE lens is space-variant, as indicated by Eqs. (15)–
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(17). The explanation of this phenomenon is contained in
the BCP matrix resulting from Eq. (18). The calculations
show that the beam is split into both a converging RCP
and diverging LCP- state beam for any incident polariza-
tion state. The converging beam is focused in a spot that
leaves the area of the focal plane illuminated by a coherent
fully polarized LCP beam. This splitting yields a plane of
fully polarized light with an equivalent mutual intensity of
unit amplitude.

3. Design and realization of the PBOE lens

PBOEs can be realized by use of space-variant subwave-
length dielectric gratings. When the period of the grating is
much smaller than the incident wavelength, the grating
behaves as a uniaxial crystal [1,36]. Therefore, we can form
any desired PBOE by correctly determining the depth,
structure, and orientation of the grating. Our objective is
to design an element that when illuminated with a circu-
larly polarized beam produces a spherical geometric phase
distribution. The PBOE is required to add a phase, ud,
which is given by,

ud ¼ 2h ¼ 2p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þ f 2

q� �
: ð22Þ

In our approach, a continuous desired phase function,
ud(q), is approximated by using discrete steps. The connec-
tion between the desired phase function and the discrete
orientation function is given by

hðx; yÞjmodpi ¼ �F N ðudðx; yÞÞ=2; ð23Þ

where FN( ) denotes a process that divides the desired
phase, ud, into N equal levels. This division process is de-
picted in Fig. 4(a). In the scalar approximation an incident
beam is multiplied by the phase function of the discrete
phase element resulting in diffraction of the emerging
beam. Quantification of this diffraction is obtained by Fou-
rier expansion of the actual phase,
Fig. 4. (a) Illustration of the discrete phase of a PBOE with N = 4. (b and
c) Scanning electron microscope (SEM) images taken from a small region
of a PBOE lens that was realized on GaAs wafer. Note the rectangular
shape of the subwavelength grooves and the space-variant groove
orientation. (d) Measured phase of the emerging beam.
expðiF N ðudÞÞ ¼
X

m

Cm expðimudÞ; ð24Þ

where Cm is the mth order coefficient of the Fourier expan-
sion. The diffraction efficiency of the mth diffracted order is
given by jCmj2. The first diffraction order represents an ex-
act replica of the desired phase, ud. Consequently, the dif-
fraction efficiency, jC1j2, for the first diffracted order is
related to the number of discrete levels N by

jC1j2 ¼
N
p

sin
p
N

� � �2

: ð25Þ

This equation indicates that for 2, 4, 8, and 16 discrete
phase levels, the diffraction efficiency will be 40.5%,
81.1%, 95.0%, and 98.7%, respectively. The connection be-
tween the first order diffraction efficiency and the number
of discrete levels was verified experimentally in Refs. [1,16].

We formed a binary chrome mask using high-resolution
laser lithography. The amplitude transmission, t(x,y), of
the mask is derived from

tðx;yÞ¼U s cos
2p
K
ðxcoshðx;yÞþ y sinhðx;yÞÞ

� �
� cosðpqÞ

� �
;

ð26Þ
where K and q are the period and fill factor of the subwave-
length grating, respectively, x, y are the transverse plane
Cartesian coordinates, and Us is the unit step function
defined by

UsðnÞ ¼
1; n P 0;

0; n < 0:

�
ð27Þ

The mask was 10 mm in diameter and h(x,y) was calcu-
lated from Eqs. (22) and (23) where k = 10.6 lm, f =
200 mm and the number of discrete levels N = 8. Accord-
ing to Eq. (25), we expected to obtain more than a 94%
diffraction efficiency into the first order. A subwavelength
period of K = 2 lm was selected together with a fill fac-
tor q = 0.5 for use with CO2 laser radiation of a 10.6 lm
wavelength. Fig. 1(c) shows a magnified geometry of the
mask. The mask was transferred by contact lithography
to 500 lm- thick GaAs wafers onto which had been pre-
deposited a 2000 Å layer of SiNx. The SiNx deposition
was achieved by enhanced chemical vapor deposition
(PECVD) at 900 mTorr and 300 �C. At this stage, a
700 Å Ni adhesion layer was used for the lift-off process.
Next, the SiNx layer was etched through the Ni strips,
which served as a mask. The etching was performed by
reactive ion etching (RIE – Plasma-Therm 790) for 30 s
at room temperature with CF4 and O2 at gas flow rates
of 35 sccm and 14 sccm, respectively, and at a pressure of
80 mTorr. The GaAs was then etched by electron cyclone
resonance (ECR – Plasma-Therm SLR) for about eight
minutes, with the etched SiNx layer serving as a mask.
The ECR conditions were: 20 sccm of Cl2, 5 sccm of Ar,
75 W RF power and 600 W microwave power, at 100 �C.
The remaining SiNx was removed using HF acid resulting
in a grating of 5 lm nominal depth for a / = p retardation
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element. The final step in fabricating the desired PBOE in-
volved depositing an anti-reflection coating on the backside
of the elements. Fig. 4(b) and (c) shows scanning electron
microscope (SEM) images of a small area of the / = p ele-
ment. Note the high aspect ratio (�1/5) and the rectangular
shape of the grooves. In order to confirm the formation of
the desired phase, we used an experimental procedure de-
scribed in Section 4 of Ref. [17]. The measured geometric
phase added by the PBOE is presented in Fig. 4(d). The
transmission coefficients of the PBOEs were also measured
and resulted in tx = 0.96 and ty = 0.94 for light polarized
parallel and perpendicular to the grating grooves respec-
tively, while the retardation of the element was found to
be / = 0.9p. The measured values were close to the theoret-
ical predictions of tx = 0.959, ty = 0.936 and / = p, ob-
tained by using rigorous coupled wave analysis.

4. Experimental results

In order to investigate the behavior of the element with
partially polarized illumination, we formed an incident
beam by combining two orthogonally polarized CO2 laser
Fig. 5. (a) Setup for combining the two lasers to generate partially polarize
distributions of the beam emerging from the PBOE followed by an analyzer wit
Intensity distribution of the beam emerging from the PBOE when illuminated b
distribution cross-sections measured, along the white line depicted in (b–e), for
the polarizer (dotted line), linearly polarized illumination (dashed-doted line) an
DOP distribution over the beam beyond the PBOE when illuminated by a cir
beams with a polarizing beam combiner (see Fig. 5(a)).
The resultant DOP, as calculated by Eq. (2), is given by

P ¼ I2 � I1

I1 þ I2

����
����; ð28Þ

where I1 and I2 are the intensities of the lasers. By setting
one of the lasers’ intensities to zero, a fully polarized beam
was achieved. To produce unpolarized light we used laser
beams with equal intensities, i.e., I1 = I2. First, we tested
the correlation between the RCP and the LCP portions
of the incident beam. This correlation is expressed by the
off-diagonal elements of the vectorial interference matrix,
C, and can be measured by placing a linear analyzer-pola-
rizer behind the PBOE. The use of an analyzer imposes a
coupling between the BCP matrix elements of the beam
emerging from the PBOE, as can be seen in the calculations
included in Appendix B. The intensity distribution behind
a p-retardation PBOE followed by the analyzer, illumi-
nated with a plane-wave of partial polarization is calcu-
lated using Eq. (B.3) and yields,

Ip ¼
1

2
I in þ jjRLj cos½4hðqÞ � argðjRLÞ�: ð29Þ
d light: PBS – a polarization beam-splitter, M – mirror. (b, c) Intensity
h (b) linearly polarized illumination and (c) unpolarized illumination. (d,e)
y (d) linearly polarized light, (e) unpolarized light. (f) Normalized intensity
the unpolarized illumination (dashed line), unpolarized illumination with
d linearly polarized illumination with a polarizer (solid line). (g) Measured

cularly polarized light.
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This equation makes evident the periodic behavior of the
intensity with the inclusion of the mean value of Iin/2,
and with a modulation equal to the absolute value of
jRL. More explicitly, when jjRLj = 1, i.e., there is complete
correlation between the RCP and LCP states and the visi-
bility of the fringes is unity. This case is depicted in
Fig. 5(b) in which the PBOE was illuminated by linearly
polarized light, and the near-field intensity was captured
by a Spiricon Pyrocam III camera. The high visibility of
the fringes can be observed in this figure. However, when
RCP and LCP portions of the incident beam are uncorre-
lated (jjRLj = 0), the visibility of the fringes is zero. We
demonstrated this case by illuminating the PBOE with
unpolarized light. The resulting intensity distribution is
presented in Fig. 5(c), in which no fringes are observed.
Note that the combination of the PBOE with a linear ana-
lyzer can be exploited to measure the degree of correlation
between the RCP and LCP components of a partially
polarized beam. Next, the analyzer was removed, and the
intensity distribution behind the element was captured.
This result is presented in Fig. 5(d) for linearly polarized
illumination and 5(e) for unpolarized illumination. No
modulation can be seen in these figures, because the matrix
C does not affect the intensity. To visualize the modulation
depth of the mentioned intensity distributions, we present
cross-sections of these measurements in Fig. 5(f). With
the use of the analyzer, it can be clearly observed that the
fully polarized incident beam results in a high intensity
modulation, (typically of 0.9), but that when the element
is illuminated with an unpolarized beam, very low intensity
modulation is seen, (typically of 0.08). These values are
close to the theoretical ones, which are 1 for the polarized
illumination and 0 for the unpolarized illumination. We
also measured the DOP in the plane behind the element
illuminated by a RCP beam using a four-measurement
technique [35]. This measurement is shown in Fig. 5(g)
and demonstrates almost complete uniformity in the
behavior of the DOP in the output plane. We have calcu-
lated the mean value of the DOP within the square area de-
picted in Fig. 5(g) to be 0.98 with standard deviation of
0.003 compared to 2% non-uniformity of the quarter wave
plate (QWP) used for the measurement. These results prove
that our PBOE is a non-polarizing element as required.

Section 2 provides the explanation for the dependence of
a geometric phase induced by a PBOE on the incident
polarization state. We devised the scheme depicted in
Fig. 1(b) to experimentally confirm this dependence. For
this purpose we used the element designed and realized in
Section 3, i.e., a p-retardation spherical-phase PBOE.
Our element acts as a polarization-dependant lens with a
focal length f = 200 mm for RCP light and �f for LCP
light (see Fig. 1(a)). The third polarization order, Jin,
appears as a result of an etching error of the element which
causes a deviation from the p-retardation. The appearance
of this polarization order can be calculated from Eq. (5)
using the measured retardation phase of / = 0.9p to be
g0 = 0.024. To focus the three polarization orders along
the positive direction of the z-axis, a refractive lens was
inserted behind the element. The focal length of the refrac-
tive lens was fr = 127 mm. The phase induced by the
resulting composite element is the sum of the polariza-
tion-dependent geometric phase obtained by the PBOE
and the dynamic phase obtained by the refractive lens.
We illuminated the combined element with a linearly polar-
ized light. A rotating QWP was used as a polarization state
generator. Fig. 6 shows the measured and predicted effi-
ciencies of the three polarization orders’ intensities as a
function of the QWP orientation angle. Three examples
of such spots are shown in the insets of Fig. 1(b). These
spots were experimentally found to be diffraction limited.
The polarization orders denoted by R, L and Jin corre-
spond to the three orders depicted in Fig. 1(b). As can be
seen from Fig. 6, the efficiencies of the three polarization
orders depend on the RCP and LCP portions in the inci-
dent beam. For example, when the PBOE is illuminated
by RCP light, most of the beam intensity is being focused
to the L plane according to Eq. (21). This example corre-
sponds to the QWP orientation of 135� (see Fig. 6). From
this figure it is evident that the intensity of the L polariza-
tion order is close to unity while the intensity of the R

polarization orders is zero. Note the low efficiency of the
Jin order which indicates that the analyzed PBOEs retarda-
tion is close to p. The curves of the R and the L orders coin-
cide for a linearly polarized incident beam which is
achieved by orienting the QWP at 90�. This figure indicates
that our composite element behaves as a multi-focal polar-
ization-dependent lens.

We also experimentally investigated the behavior of this
element with partially polarized illumination. The DOP of
the incident beam has been controlled by adjusting the
intensity of one of the lasers while keeping the second
one constant. We considered the superposition of two
orthogonal linearly polarized as well as circularly polarized
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lasers. The BCP matrix for orthogonal linearly polarized
uncorrelated beams combining is,

Jin ¼
ðI1 þ I2Þ

2

1 P � sgnðI2 � I1Þ
P � sgnðI2 � I1Þ 1

� �
; ð30Þ

where sgn is a sign function. The combining of two uncor-
related orthogonal circularly polarized beams is repre-
sented by the BCP matrix,

Jin¼
I1þ I2

2

1þP �sgnðI1� I2Þ 0

0 1�P � sgnðI1� I2Þ

� �
: ð31Þ

Both types of combining were achieved by using the setup
depicted in Fig. 5(a) with the QWP oriented at 0� and 45�,
respectively. Fig. 7 describes the measured focal spot inten-
sity in the R polarization order focal plane for both
combining schemes as a function of intensity ratio I1/I2.
As evident from Fig. 7, when the incident beam is com-
posed of two orthogonal linearly polarized beams, the effi-
ciencies of the R and L orders are equal regardless of the
intensity ratio of the combined beams. However, when
the beam is composed of two orthogonal circularly polar-
ized beams, the polarization order efficiency becomes a
function of the intensity ratio of the combined beams.
For instance, when the intensity ratio is zero, i.e., the beam
is in a LCP state, the R focal spot intensity will be maximal.
On the other hand, for the infinite intensity ratio, i.e., when
the incident beam is in a RCP state, the R order focal spot
will yield zero intensity. Therefore, it is possible to modu-
late the polarization orders’ efficiencies by controlling the
intensity ratio of the uncorrelated beams combining in a
circularly polarized state. The point where I1/I2 = 1 corre-
sponds to the unpolarized beam (P = 0). At that point the
two lines coincide, indicating similar behavior of the two
combining beams.
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partially polarized light with linearly polarized fraction. Triangles indicate
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polarized fraction. Dotted and the dashed lines are the theoretical
predictions for the above cases. Vertical dotted line illustrates a point with
zero DOP.
An interesting phenomenon concerning the propagation
properties of the beam was observed when illuminating the
PBOE with unpolarized light. The DOP along the z-axis
was measured in the front focal region of the PBOE, (with-
out the refractive lens). We can see that while the intensity
is a sinc-like [37] function, the DOP is close to a rectangular
shape within the focal depth, as can be seen in Fig. 8. This
effect can be explained as follows: the two emerging polar-
ization orders in this case are uncorrelated, hence the DOP
along the axis can be found from Eq. (28), where I1 and I2

are replaced by the intensities of the polarization orders on
the z-axis. These intensity distributions along the z-axis are
of sinc-function form, however they are relatively shifted
along the z-axis (the two focal distances f = ±200 mm).
The zeros of the DOP depicted in Fig. 8 correspond to
equal order intensities, while the high values of the DOP
match the regions where one of the orders intensity is close
to zero. This result indicates that the DOP is changed along
propagation. The variation of the DOP along the propaga-
tion axis was investigated earlier [28,34,38]. However, in
our case, it is possible to control the shape of the DOP
along the propagation axis by choosing the focal length
of a PBOE or alternatively choosing a PBOE with a sophis-
ticated geometric phase [13].

5. Conclusion

The behavior of geometric phase elements (PBOEs) illu-
minated by partially polarized monochromatic beams was
analyzed. We have shown that in the case of partially
polarized illumination the beam emerging from a PBOE
with a p-retardation comprises two polarization orders.
The first and the second polarization orders are RCP and
LCP states, respectively. Both polarization orders acquire
conjugate geometric phase modifications that result from
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a polarization state manipulation created by the element.
The intensity of the RCP (LCP) polarization order is equal
to the amount of the LCP (RCP) portion in the incident
beam. Apart from the two polarization orders, the emerging
BCP comprises a matrix termed the ‘‘vectorial interference
matrix’’. This matrix contains the information concerning
the correlation between the RCP and the LCP portions
of the incident beam. We suggested a simple interference
experiment to measure the degree of this correlation by
placing a polarizer behind the PBOE and measuring the
emerging intensity. We have shown experimentally that
the vectorial interference matrix distinguishes between the
cases of linearly polarized and unpolarized illumination.
The PBOE used for the experimental demonstration was
a spherical geometric phase PBOE designed for CO2 laser
radiation and realized on a GaAs wafer with a subwave-
length grating. We have shown that this PBOE followed
by a refractive lens behaves as a multi-focal polarization-
dependent lens. Such a lens can be implemented in a variety
of applications, such as multi-layer data storage and polar-
ization imaging [39,24]. We also studied the intensity, the
normalized equivalent mutual intensity, and the DOP
immediately after the element and upon propagation in
free-space. We found that the equivalent mutual intensity
was modulated according to the geometric phase induced
by the element. Moreover, we showed that in the focal
plane of the PBOE lens, the DOP and the amplitude of
the equivalent mutual intensity become unity regardless
of the incident polarization state. This property can be used
in applications such as a polarizer or a polarizing beam-
splitter by placing a spatial filter in this plane.

Appendix A

A PBOE behaves as a space-variant wave plate element
with constant retardation, /, and a space-varying fast axis,
h(q), along the q coordinate [1,10,11,15–17]. The Jones
matrix of such an element is written as,

Tc ¼M�1ðhÞWð/ÞMðhÞ; ðA:1Þ

where M and W represent the rotation matrix and the ma-
trix of a non-polarizing wave plate oriented in the x̂ direc-
tion. Explicitly, these matrices are given by,

M ¼
cosðhÞ sinðhÞ
� sinðhÞ cosðhÞ

� �
; W ¼

1 0

0 expði/Þ

� �
: ðA:2Þ

In the case of a PBOE, it is convenient to transform the
Jones matrix to a helicity basis in which the vector bases
are the right and left-handed circularly polarized states,
i.e. RCP = (1 0)T and LCP = (0 1)T. The conversion
of Tc to the helicity basis results in a transmission matrix of

T ¼ U�1TcU; ðA:3Þ
where U is the unitary transformation matrix, written as

U ¼ 1ffiffiffi
2
p

1 1

�i i

� �
: ðA:4Þ
Accordingly, the PBOE transmission matrix is written
explicitly as,

T ¼ expði/=2Þ
(

cosð/=2Þ
1 0

0 1

� �
:

�i sinð/=2Þ 0 ei2hðqÞ

e�i2hðqÞ 0

" #)
: ðA:5Þ

Appendix B

The expression for the BCP matrix emerging from a
PBOE (Eq. (5)) contains a matrix denoted by C. This
matrix is defined as,

C ¼
c1;1 c1;2

c2;1 c2;2

 !
; ðB:1Þ

where the C matrix elements are given by,

c1;1¼ i
ffiffiffiffiffiffiffiffiffi
g0g1

p ðjLRei2hðq1Þ � jRLe�i2hðq2ÞÞ;
c1;2¼ i

ffiffiffiffiffiffiffiffiffi
g0g1

p ðjLLei2hðq1Þ � jRRei2hðq2ÞÞþg1ðjLRei2h½ðq1Þþhðq2Þ�Þ;
c2;1¼ i

ffiffiffiffiffiffiffiffiffi
g0g1

p ðjRRe�i2hðq1Þ � jLLe�i2hðq2ÞÞþg1ðjRLe�i2h½ðq1Þþhðq2Þ�Þ;
c2;2¼ i

ffiffiffiffiffiffiffiffiffi
g0g1

p ðjRLe�i2hðq1Þ �jLRei2hðq2ÞÞ:
ðB:2Þ

Note, that the trace of C is zero at q1 = q2, thus, the inten-
sity of the emerging beam, presented by Eq. (5), is not
affected by this matrix. However, the off-diagonal elements
are of great importance since they bear the information
on the correlation of the polarization components, i.e.,
jRL and jLR. One can measure the degree of correlation by
transmitting the emerging beam through a polarizer. The
calculation of the resulting intensity can be found from:
Ip = tr{P+JoutP}, where the transmission matrix of a pola-

rizer is P ¼ 1
2

1 1
1 1

� �
and Jout is the beam’s BCP matrix as

calculated by Eq. (5). The resulting intensity would be,

Ip ¼
1

2
I in þ cos2 /

2

� �
jjRLj cos½argðjRLÞ�

þ sin2 /
2

� �
jjRLj cos½4hðqÞ � argðjRLÞ�

þ 1

2
sin / sin 2hðjRR � jLLÞ; ðB:3Þ

where Iin is the incoming intensity. Note that Ip is modu-
lated according to the off-diagonal elements of the C ma-
trix, and thus, by Fourier analysis we can extract the
correlation values, jRL and jLR.
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