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This paper provides a method based on rigorous coupled wave analysis for the calculation of the radiative
thermal conductance between a layer that is patterned with arbitrary, periodically repeating features and a planar
substrate. This method is applied to study the transfer from an array of beams with a rectangular cross section.
The impact of the structure size and spacing on the thermal conductance are investigated. These calculations are
compared to an effective medium theory, which becomes increasingly accurate as the structure sizes fall well
below the relevant resonance wavelengths of materials and structures. Moreover, comparisons are made with
a modified proximity approximation and the far-field approximation, which become valid for small and large
spacings, respectively. Results show that new levels of control over the magnitude and spectral contributions to
thermal conductance can be achieved with corrugated structures relative to planar ones. Specifically, we show for
SiC arrays with rectangular cross sections and with the same filling fraction, that the use of a smaller periodicity
leads to a lowered far-field thermal transfer and an increased near-field thermal transfer.

DOI: 10.1103/PhysRevB.91.014302 PACS number(s): 44.05.+e, 44.40.+a, 05.40.−a

I. INTRODUCTION

The control of thermal emission is critical to a variety of
applications such as energy conversion [1,2], imaging [3],
and thermal emitters [4,5]. One way to achieve control over
thermal emission is by manipulating the near-field surrounding
optically resonant nanostructures [6,7]. Radiative thermal
transfer between two objects, which obeys Planck’s law [8]
in the far-field limit, shows a dramatic enhancement when
the separation is reduced to such an extent that near-field
effects dominate the thermal transfer [9–11]. Near-field effects
cause a redistribution of the local density of states (LDOS)
and enable evanescent waves to make the most significant
contribution to the total thermal transfer. In addition to the total
magnitude of the thermal transfer, the spectral contributions
also dramatically change in the near-field regime [10].

Recent developments in area of nanophotonics have in-
spired efforts to use structures with subwavelength features for
the purpose of controlling radiative thermal transfer. An exact
theory is available to quantify the thermal transfer between an
arbitrary number of arbitrarily shaped objects [12]. However,
finding numerical solutions for seemingly simple geometries
(e.g., a nanoparticle above a plane) requires tremendous com-
putational power as multiple frequencies and length scales are
involved. For this reason, there have been intense efforts
to develop new, efficient numerical techniques that enable
calculation of thermal transfer in specific geometries. This
enabled calculation of thermal transfer in important basic
geometries, such as planar-to-planar [9,13,14] as well as planar
structures to a sphere [15–17], a cylinder [17], and even a cone
[17]. A good review that summarizes the results of such studies
is given in Ref. [18].
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In addition to the development of faster numerical tech-
niques, physical insight is also used to improve the speed
by making certain reasonable approximations. For exam-
ple, effective medium theory has been used to speed up
calculation of the thermal transfer between subwavelength
periodic structures [19–23]. This theory transforms high
spatial frequency structures to uniform, simple structures for
which the variations in optical properties occur just along
a single dimension creating a stratified medium; after that,
theories to deal with stratified media [9] can be applied for
calculation of the thermal transfer. Effective medium theories
cannot handle periodic structures with structure sizes that are
not deep-subwavelength for all of the relevant wavelengths in
the problem. Here, the relevant wavelengths can be linked to
material-related resonances (e.g., plasmonic or phononic) or
structure related resonances (e.g., Mie or grating resonances).

In this paper, we theoretically derive an expression for the
radiative thermal heat transfer in periodic structures based
on a rigorous coupled wave analysis (RCWA) method that
can handle such structures. This enables one to access new
physical regimes and to discover and systematically analyze
new physical phenomena in thermal transfer physics. Thermal
emission from periodic structures to air is investigated in
several references [24,25]. Moreover, the thermal transfer
between two gratings with semi-infinite sizes is investigated
using the scattering method, recently [26,27]. The scattering
trace formulas have also been incorporated for structures made
of multiple bodies [28]. Here, we consider the thermal transfer
between a finite-sized nanostructured periodic material and a
planar structure in the near-field regime. The RCWA technique
together with the possible use of symmetries in a system boosts
the numerical efficiency compared with the simulations that
has been done for calculation of thermal transfer between
grating structures using the Finite-difference time-domain
(FDTD) method, recently [29]. Moreover, for comparison
purposes, some approximation methods are developed for
thermal transfer calculation. One well known method for
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near-field thermal transfer calculation is the proximity method
[30–32]. Here, since the periodic structure can have a finite-
sized height, the proximity method is generalized to take care
of such finiteness. On the other hand in the far-field regime,
the thermal transfer can be calculated based on knowledge of
the directional emissivity of the substrate.

The RCWA formalism provides significant flexibility to
include arbitrarily shaped nanostructures and good criteria
for determining the accuracy of obtained results based on
convergence by increasing the number of spatial harmonics.
Our proposed method bears some resemblance to the scattering
method [15,33] in its final form; however, there are some
distinguishing technical differences. Our method also provides
a very direct way for determining the variation in thermal trans-
fer across a period in the periodic structures. This variation
can itself give important information to determine whether the
periodicity is in the subwavelength regime or not. For instance,
in the regime that periodicity is on the same order or even larger
than the pertinent resonance wavelength, one would intuitively
expect that the thermal transfer flow to be maximized in the
regions where the top and bottom layer are closer together and
vice versa. In fact, in this regime the total thermal transfer can
be seen as a superposition of parallel channels corresponding
to regions with different gap sizes, in which the contribution
of each channel is dependent on the local gap size. This
decomposition breaks down in the regime that periodicity
becomes subwavelength, in which effective medium theory
becomes more accurate, and the interference between two
adjacent regions becomes increasingly important. In the deep
subwavelength regime, thermal transfer should have negligible
variation across the period.

It should be noted that there are some recent proposed tech-
niques such as using of trace formulas based on the boundary
element methods [34] for thermal transfer calculation. In addi-
tion, there are some available eigen-mode expansion methods
[35] for this purpose. However, the superiority of the proposed
method is that it does not need to find a proper orthonormal
basis based on the geometry of the structure. Furthermore, it
does not require carrying out FDTD simulations for obtaining
the spectral energy flux from each mode.

The use of the RCWA method for obtaining electromagnetic
field patterns is quite common in nanophotonics. A numeri-
cally stable version of this method was first developed by
Moharam et al. [36,37], and this technique can be used to
obtain electromagnetic field distributions developed around
arbitrary periodic structures under plane-wave incident field
illumination. However, for thermal transfer calculations, we
will use it to calculate the Green’s functions that capture
the electromagnetic field responses to arbitrarily located and
oriented electric dipoles. For the calculation of the Green’s
functions with the RCWA method we have made use of the
modified Sipe’s formalism [25,38].

In continuation, the derived method is used for the
calculation of the thermal conductance between a SiC slab
and an array of SiC beams of rectangular cross section.
Here, the dependence of the thermal transfer on beam size
is explored. Silicon carbide is a polar semiconductor and its
surface supports electromagnetic waves coupled to collective
lattice vibrations known as surface phonon polaritons (SPhPs).
These surface waves which are in the infrared spectral region,

provide the main channels for thermal transfer in the near-
field regime for such materials. The numerical calculations
are done for spacings and periodicities that span several
orders of magnitudes to explore different physical regimes
for the thermal transport. Since SiC has a phononic resonance
wavelength around 10 μm, we also expect Mie resonances
to show up themselves in these range of distances. Our
calculations verify this hypothesis by showing that in this range
of distances, the thermal conductance obtains its maximum
value for nonplanar structures. This observation demonstrates
that periodic structures can be used to reach new levels
of control over thermal transfer and afford access to new
resonant pathways that enhance or spectrally control the
thermal transfer.

II. EXACT THEORY

Before deriving the theory used for calculating the thermal
transfer from a periodic to a planar structure, it is educational
to briefly review the derivation of Green’s functions in planar
structures through the use of Sipe’s method [38]. Thermal
transfer calculations involving planar structures were first
done by Van Hove and Polder in 1971 [9]. Sipe showed
how the required Green’s functions for the calculation of
thermal transfer can be rederived in a convenient form for
an arbitrary stack of planar materials. The first section of the
Supplemental Material [39] is devoted to this rederivation. This
corresponds to a calculation of Green’s functions in structures
like the one shown in Fig. 1(a). Generalizing Sipe’s approach,
Green’s functions can be obtained for periodic structures.
Those Green’s functions can be used later for obtaining the
thermal transfer through a calculation of the Poynting vector
that captures the thermal power flow from one medium to
another. A schematic of the type of periodic structures of
interest is illustrated in Fig. 1(b). For illustration purposes
and to simplify the math involved, we restrict ourselves to
have one of the materials to be planar (shown as material 2).

For calculation of the near-field thermal transfer, the
Green’s functions
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are defined as follows:
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FIG. 1. (Color online) Schematic of (a) planar structured materi-
als and (b) a planar and an arbitrary shaped periodic structure that
will be analyzed in thermal transfer calculations.
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−→
Ga

H (ω,x,y,z,kx,ky)

� −ωμ0

2kz

∑
b

(
−−−→
ResH (ω,x,y,z,ββ̂,z′ = 0,p̂2+)p̂2+

+−−−→
ResH (ω,x,y,z,ββ̂,z′ = 0,ŝ)ŝ)baêb, (2)

where êb is the unity vector in direction b, which takes on the
unity vectors in x, y, and z directions in the summation. These
are the electric and magnetic fields at position x, y, and z,
produced by the unity component a of the current density at
z′ = 0, respectively. Note that

−−→
ResE(ω,x,y,z,ββ̂,z′ = 0,p̂2+),−−→

ResE(ω,x,y,z,ββ̂,z′ = 0,ŝ) are the electric field responses
at position x, y, and z to P and S polarized incident
plane waves with a transversal wave vector ββ̂ and a unity
electric field amplitude at position z′ = 0 and an angular
frequency of ω. Similarly,

−−−→
ResH (ω,x,y,z,ββ̂,z′ = 0,p̂2+) and−−−→

ResH (ω,x,y,z,ββ̂,z′ = 0,ŝ) are the corresponding magnetic
field responses. These vector quantities can be obtained
through the RCWA method. The above equations are modified
versions of Sipe’s formalism [38] as applied to periodic
structures.

Moreover, we know that the fluctuating current densities
inside a material in thermodynamic equilibrium at a temper-
ature T obey the following correlation relation known as the
fluctuation dissipation theorem [40,41]:

〈 �Ja(ω, �r0) �J ∗
b (ω′, �r ′

0)〉
= 4πε0ε

′′(ω)�ω2(e�ω/kbT − 1)−1δabδ(ω − ω′)δ( �r0 − �r ′
0).

(3)

Using the above equations and after a somewhat tedious
derivation [39], the following expression is obtained for the
thermal conduction:

Stotal(x) = 1

4π3

∑
a

∫ +∞

ω=0
dωε0ε

′′(ω)(e�ω/kbT − 1)−2

×
∫ +∞
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)
z

]
. (4)

In fact, what is measured as the total heat conductance is
the average of the above function across a period, which we
show here with the same symbol:

Stotal = 1

P

∫ P

x=0
Stotal(x)dx. (5)

We have assumed that the periodic material is located between
planes z = 0 and z = −h. In the case when the periodically
structured material extends to infinity, we should simply
neglect the terms corresponding to z = −h in Eq. (4).

It is important to note that considering only the fields in a
line in the x direction saves significant computational time. In

fact, this is achieved by exploiting the translational symmetry
of our structure in y direction and also the fact that for obtaining
the energy flow, it is sufficient to calculate the Poynting vector
in a cross section. Note that in our method, the variation in
the thermal transfer across a period can also be obtained. This
provides the ability to determine the contributions of different
locations across the period to the total thermal transfer or
conductance.

Moreover, in the above calculations, we are involved with
only transverse components of the electromagnetic fields.
Since these quantities are continuous across the barrier,
we need only to calculate the electromagnetic fields in the
substrate right at the boundary and also in the plane z = −h

right outside the periodic material. Electromagnetic fields in
the substrate right at the boundary can be calculated from
the reflection coefficients in the RCWA formalism. Similarly,
electromagnetic fields right outside the periodic material can
be calculated from transmission coefficients. This will further
simplify the required RCWA calculations since the calculation
of the electromagnetic fields in the middle layers are not
needed anymore. (See Sec. 7 of Ref. [37].)

III. APPROXIMATION METHODS

A. Far-field approximation method

For calculation of the thermal transfer in the far-field
regime, we can use the fact that the directional emissivity of
the substrate is given by the ep(θ ) = 1 − |Rp(θ )|2 and es(θ ) =
1 − |Rs(θ )|2 corresponding to the p and s polarizations,
respectively [42]. Then the thermal transfer can be calculated
based on how much the emitted power is absorbed by the
periodic structure. To first order, if we neglect the contribution
of the rays after reflection from the top structure and returning
to it after reflection from substrate, we have

S(ω) = �
2ω4

8π3c2kbT 2

(
e

�ω
kbT − 1

)−2
e

�ω
kbT

×
∫ 2π

0

∫ π
2

0
sin(θ ) cos(θ )dθdφ

× [ep(θ )Ap(θ,φ) + es(θ )As(θ,φ)], (6)

where in that Ap(θ,φ) and As(θ,φ) corresponds to the
absorption of the periodic structure at an azimuthal angle φ and
a polar angle θ for p and s polarizations, respectively. Since the
contributions of the rays undergoing two or more reflections to
the thermal transfer are neglected, this approximation gives a
lower limit to the exact thermal transfer in the far-field regime.

B. Modified proximity method

For calculations in the near-field regime, the proximity
method is perhaps the most popular one [30–32]. However,
in its original form, the two bodies are assumed to have
semi-infinite height. Here, since the periodic structure can have
a finite height, the proximity method has to be generalized. In
this method, thermal transfer is calculated across a period,
based on the distance of the two bodies and the height of
the periodic structure at that point. According to this method,
for an array of beams with rectangular cross section, thermal
transfer should vary in proportion to the filling fraction (FF ),
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Air

SiC

FF×P P

d
dbeam
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with rectangular 

cross section 

FIG. 2. (Color online) SiC beams with a rectangular cross section
are placed in front of a SiC substrate. The width of each beam is
assumed to be FF × P , and they are separated by a distance P from
each other. The distances involved for this structure are shown in the
figure.

which is defined as the ratio of the beam width to the
periodicity.

IV. NUMERICAL SIMULATIONS

In the following, we consider a periodic array of SiC beams
of rectangular cross section placed above a continuous slab
of SiC (Fig. 2). Using our developed formalism, the thermal
conductance between the SiC beams and the slab of SiC
is numerically calculated. The details of the notations used
for the parameters involved in this structure are shown in
Fig. 2. Calculations for this structure have been done for
four different separations between the two SiC structures
(specifically, d = 50, 5, 0.5, and 0.05 μm) and different
periodicities (specifically, P = 1, 10, and 0.1 μm ). The height
of the beams in the considered structures is dbeam = 5 μm.

Based on Refs. [43,44], it is assumed that the relative per-
mittivity of SiC can be written as ε = ε∞ + ω2

0(εs − ε∞)(ω2
0 −

ω2 + iωδ)−1, with ε∞ = 6.7, εs = 10, δ/ω0 = 0.006, and
ω0/(2π ) = 2.38 × 1013 sec−1(12.6 μm). The frequency vari-
ations of the real and imaginary parts of this relative permit-
tivity are plotted in Fig. 3. In addition, the temperature that is
assumed in the numerical calculations is T = 315 K.

A. Numerical implementation

For calculations based on the RCWA method, it is well
known that increasing the number of harmonics leads to a more
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FIG. 3. (Color online) Frequency variations of the real and imag-
inary parts of SiC relative permittivity.

accurate determination of the field distributions. However, this
increase will lead to an increase in computational time as well.
Since the numerical evaluation of the thermal conductance
by the presented method involves inverting 4n × 4n matrices,
the computational time grows with the cube of the number of
harmonics incorporated. It is clear from the last equation in
theory section that obtaining the spectral thermal conductance
at a specific frequency requires two-dimensional integrations
in the kx , ky plane. For each value of kx and ky , an RCWA
calculation should be carried out to obtain the corresponding
integrand. This clarifies the importance of identifying a fast
integration technique to maximize the speed of calculations.
We have used the VEGAS method for integration in kx , ky

plane, which is based on Monte Carlo important sampling
of the integrand function [45]. To verify our calculation
technique, we first accurately reproduced the results for the
limiting cases of gratings with filling fractions of 0 and 1. In
those cases, using just one harmonic will lead to the precise
result and the RCWA method will converge to the results that
can be obtained with the transfer matrix method for a stratified
medium consisting of uniform layers. In these extreme cases,
we can simply use the planar methods developed by Polder
and Van hove [9].

For this study, these numerical calculations were run on a
node with 16 CPUs using MPI [46] for parallelization (the
node that we used for our calculations has 16 processors
of 2.67 GHz Intel Xeon X5550). The time required for
obtaining each set of results on a single node for the case
of 21 harmonics was around 10 hours. However, this can be
decreased by capitalizing on certain symmetries in specific
periodic structures, which has been proposed for the 2D grating
in Ref. [47] and can be incorporated in 1D grating structures
as well (using for instance the inversion symmetry present in
the binary grating).

To study the convergence of the results with the number
of harmonics, calculations were made with four different
numbers of harmonics: 1, 5, 11, and 21. Obtained results show
that for the considered structures, the thermal conductance
converges with less than 2% error by incorporating 21
harmonics without the need for using more harmonics.

B. Numerical Results

One important fact that can be derived from the obtained
results is that, as the periodicity decreases, the result obtained
with using just one harmonic becomes more accurate. This is
to be expected since in the case of incorporating just one
harmonic, our method reproduces results obtained by the
effective medium theory (EMT), which becomes increasingly
accurate in the subwavelength regime (compared with the
surface phonon polariton resonance wavelength). Note that
in the case of using just one harmonic, the permittivity of
each layer is replaced by a constant value across the period.
This constant value, however, takes on different magnitudes
depending on the incident electric field direction. This is the
case also in the effective medium theories [19–23], used
for calculation of the thermal transfer, in which effective
permittivities of different layers are calculated as constant
tensorial quantities. In this regard, our proposed method can be
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FIG. 4. (Color online) Contributions to the thermal conductance
for the structure shown in Fig. 2 across a period for different values
of periodicity, by assuming a constant value of FF = 0.4, in the case
of (a) d = 5, (b) 0.5, and (c) 0.05 μm.

used to determine the accuracy of the effective medium theory
and how the actual responses are deviating from it.

Figure 4 shows the contribution of different points across
the period to the total thermal conductance. In this figure the
thermal conductance is plotted as a function of position x

across the period at the z = 0 plane for different values of
periodicity and distances. The filling fraction is assumed to be
the same value of 0.4 in all cases. Note that since we have
translational symmetry in the y direction, there is no change in
thermal conductance in that direction. This figure verifies the

fact that the thermal conductance in the limit of small periods
tends toward a constant value across the period which can be
obtained by effective medium theory. On the other hand, this
figure further demonstrates that for periodicities larger than
some critical value, the thermal conductance can be modeled as
a superposition of two channels; a channel with larger thermal
conductance, which is due to parts of slabs that are closer
together and the other one with smaller thermal conductance,
which is due to the sections that are farther from each other.
These plots were obtained by incorporation of 21 harmonics.
Note that these plots show the total thermal conductance from
the substrate to outside and do consider the part of it that goes
outside the array of beams, as well.

The results of the calculations for the structure shown in
Fig. 2 with different values of periodicity are shown in Fig. 5
for the case of d = 50 μm. The total thermal conductance for
the small periods is monotonically increasing with increasing
filling fraction. This comes from the fact that gratings with
higher filling fractions feature more SiC material that is located
near the adjacent SiC slab. This then naturally facilitates higher
evanescent coupling. However, for the case of d = 50 μm with
the periodicity of P = 10 μm, a peak in thermal transfer is
achieved for a value of the filling fraction that is neither 0 nor
1. Noting the fact that the phononic resonance wavelength of
the SiC is around 10 μm, one can expect Mie resonances of
the beams to become important in this case. Such resonances
can enhance the thermal transfer and give rise to the highest
value of the thermal conductance for a nonunity filling fraction.
Note that in this case, the result of effective medium theory
has the largest inaccuracy. This is expected since in this case
the periodicity is the largest compared with the two other cases
(P = 1 and 0.1 μm).

The contributions of different frequencies to the thermal
conductance for the case of d = 50 μm are shown in Fig. 6. In
this figure, the frequency spectra of the thermal conductance
are plotted for three selected filling fractions and for different
periodicities. Considering arrays with a periodicity of P =
10 μm, one can see that the thermal conductance for the
periodic structure with a filling fraction of FF = 0.7 is higher
compared with the planar structure. From this figure, it can be
seen that this is due to resonant channels which contribute to
the thermal conductance, significantly.

For the case of d = 50 μm, thermal conductance is also
calculated based on the far-field approximation (FFA). As
we expect, this approximation gives a lower value than the
exact calculation because it neglects contributions to the
thermal transfer arising from multiple reflections of the thermal
radiation. However, it is still consistent with the fact that the
thermal transfer achieves its maximum for a nonunity filling
fraction in the case of P = 10 μm.

By decreasing the distance from d = 50 to 5 μm, the ther-
mal conductance for different filling fractions and periodicities
increases but still becomes maximum for a nonplanar structure
at P = 10 μm [see Fig. 7(a)]. This shows a transition regime,
in which both the near-field effect and Mie-resonances are
helping to achieve a higher thermal conductance.

However, as Figs. 7(b) and 7(c) show, by further decreasing
the distance, we reach a regime in which the thermal conduc-
tance monotonically increases with increasing filling fraction.
Note that this increase is not necessarily linear with the filling

014302-5



CHALABI, HASMAN, AND BRONGERSMA PHYSICAL REVIEW B 91, 014302 (2015)

  0 0.2 0.4 0.6 0.8   1

0

0.2

0.4

0.6

Filling fraction

S
to

t [S
I]

Exact
FFA
EMT

(a)

  0 0.2 0.4 0.6 0.8   1
0

0.1

0.2

0.3

Filling fraction

S
to

t [S
I]

Exact
FFA
EMT

(b)

  0 0.2 0.4 0.6 0.8   1
0

0.1

0.2

0.3

Filling fraction

S
to

t [S
I]

Exact
FFA
EMT

(c)

FIG. 5. (Color online) Total thermal conductance for the struc-
ture shown in Fig. 2 with d = 50 μm and different values of filling
fraction with the periodicity of (a) P = 10, (b) 1, (c) 0.1 μm.

fraction. However, this increase becomes more linear for large
values of the periodicity. This again is consistent with our
intuition that for large values of periodicity, the interference
between neighboring beams is negligible and that the modified
proximity approximation becomes more accurate.

By decreasing the distance, the spectral contributions to the
thermal conductance also change. As the distance decreases,
the frequency spectrum of the thermal conductance becomes
more concentrated around the surface phonon polariton reso-
nance frequency of a SiC/Air interface. This can be seen from
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FIG. 6. (Color online) Thermal conductance frequency spectrum
for the structure shown in Fig. 2 with d = 50 μm and different values
of filling fraction with the periodicity of (a) P = 10, (b) 1, and
(c) 0.1 μm.

Fig. 8, which shows the frequency spectrum of the thermal
conductance for distances of d = 5, 0.5, and 0.05 μm in the
case of periodicity of P = 10 μm.

Finally, the variation of the thermal conductance with
distance for two arrays of beams with periodicities of P = 10
and 0.1 μm (with dbeam = 5 μm and filling fraction of 0.4)
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FIG. 7. (Color online) Total thermal conductance for the struc-
ture shown in Fig. 2 with different values of filling fraction and
periodicity for (a) d = 5, (b) 0.5, and (c) 0.05 μm.

is shown in Fig. 9. As it can be seen from the figure, for
large distances, the thermal conductance is higher for the
array with larger periodicity (P = 10 μm). This can again
be attributed to the Mie resonances of the periodic structure
with larger periodicity. However, for the very small distances,
d < 0.05 μm, the structure with smaller periodicity will have
even higher thermal conductance. Note that the thermal
conductance in this near-field regime is mainly concentrated
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FIG. 8. (Color online) Thermal conductance frequency spectrum
for the structure shown in Fig. 2 with the periodicity of P = 10 μm
and different values of filling fraction for (a) d = 5, (b) 0.5, and
(c) 0.05 μm.

around the SiC surface phonon polariton frequency. Moreover,
the curve shows that the dependence in this regime is nearly as
d−2; however, it shows small deviations for the two different
periodicities.

One important feature of our method is that it can be used in
this way for calculation of thermal transfer between a slab and
a particle of any size or shape. This comes from the fact that
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FIG. 9. (Color online) Variation of the total thermal conductance
as a function of distance for the structure shown in Fig. 2 with FF =
0.4 and dbeam = 5 μm. Calculations are done for two periodicities
P = 0.1 and 10 μm.

for sufficiently large periodicities, the interference between
neighboring particles becomes negligible and the thermal
conductance is coming from the sum of the contributions
of individual beams. This can be proposed as an alternative
method for calculation of thermal conductance between, e.g.,
a sphere and a slab that has been done in several methods in
several references [15–17].

V. CONCLUSIONS

In this paper, we have developed a formalism for calculating
the thermal transfer in periodic structures with building blocks
of arbitrary size and shape. We applied this method to obtain
the thermal conductance between a slab of SiC and an array
of SiC beams of rectangular cross section. The obtained

results show that, thermal conductance in these cases can
accurately be obtained through incorporation of some of
the first harmonics. Moreover, results show that the thermal
transfer changes monotonically with increasing filling fraction
for the cases that distances are much smaller than the SPhP
resonance wavelength. However, this trend breaks down for
the case that distances are on the same order of magnitude as
the pertinent resonance wavelength. Results show that arrays
with larger periodicity but with the same filling fraction show
increased thermal transfer in the far-field regime. However, the
reverse holds in the near-field regime.

Our method, in the case of incorporating just one harmonic,
reproduces the results obtained by the effective medium theory.
In this regard, this method can be used to determine the
accuracy of the effective medium theory for specific structures
of interest. According to the numerical results obtained, as
we expect, by decreasing the periodicity of the structure
to the subwavelength regime compared with the relevant
resonance wavelengths in the system, the effective medium
theory becomes increasingly accurate.

This method can also be used to analyze the thermal
transfer between structures in which one of the materials is
composed of an array of beams. Since in the limit of large
periodicity, the interference effects between particles become
negligible, this method can be used for the calculation of the
thermal transfer between a slab and arbitrarily shaped particles.
For the reasons above, we believe that the presented technique
will prove versatile for calculating and optimizing the thermal
transfer between a wide variety of practical structures.
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