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Effect of shape in near-field thermal transfer for periodic structures
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In this paper, the effect of the geometrical shape on the radiative thermal transfer between a periodic array
of beams and a planar substrate is investigated. Specifically, we analyze the changes in the thermal transfer
that occur when the cross-sectional shape of SiC beams is modified from rectangular to ellipsoidal and finally
triangular. Numerical calculations are done based on the rigorous coupled wave analysis. These exact results from
this analysis are compared to modified proximity and far-field approximations, which become valid for small
and large spacings, respectively. Moreover, these results are also compared to effective medium theory, which
becomes increasingly accurate in the limit of small periodicities. We show that a reduction in the periodicity
will lead to a reduced thermal transfer for triangular and ellipsoidal shaped beams. Even though, in the limit of
very small periodicity, thermal transfer for the case of rectangular shaped beams also decreases by decreasing
the periodicity, this decrease is slower as compared to other cross-sectional shapes. Finally, we show that even
though changing periodicity will change the magnitude of thermal transfer, the scaling law for its variation with
the beam to substrate spacing is primarily determined by the cross-sectional shape rather than the periodicity. We
analytically prove this fact by investigating the large and small periodicity regimes.
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I. INTRODUCTION

Near-field thermal transfer [1–3] between two bodies shows
a dramatic enhancement over the far-field radiative thermal
transfer which obeys Planck’s law [4]. This fact has inspired
researchers to generate similar techniques for controlling the
near-field thermal transfer similar to the ones that have been
developed for controlling thermal emission [5–8]. Such efforts
have led to the design of nanostructures for a variety of
applications such as thermal rectifiers [9], thermal diodes [10],
and near-field thermal transistors [11].

In order to control near-field thermal transfer, use has
been made of structures with subwavelength features. In
spite of a myriad of available optical software packages,
finding numerical solutions for near-field thermal transfer
can be challenging and requires tremendous computational
power for even very simple geometries. As a result, there
have been intense efforts to develop new, efficient numerical
techniques that enable calculation of thermal transfer for
specific geometries. Geometries that are considered range from
planar structures [1,12,13] to cases where a sphere [14–16],
a cone [16], or a cylinder [16] is placed on top of a planar
substrate. There are several reviews that summarize the results
of this line of research [17,18]. In addition to a variety of exact
numerical techniques, there also exists a set of approximation
methods for thermal transfer calculations. Among them, the
most popular are the effective medium theory that is used
for subwavelength periodic structures [19–24], the proximity
approximation and its modified version [25–27], and the
coupled mode theory [9,28,29].

In this paper we use the method developed in Ref. [27] to
investigate the impact of the cross-sectional shape of beams
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in the radiative thermal transfer between a periodic array of
such beams and a substrate. In this method, rigorous coupled
wave analysis (RCWA) calculations are needed in order to
calculate the Green’s functions based on modified Sipe’s
formalism [30,31]. The RCWA formalism offers significant
flexibility for the investigation of arbitrarily shaped structures,
and the accuracy of the final results can easily be determined
based on a convergence test in which the number of spatial
harmonics is increased. This method boosts the numerical
efficiency compared to similar calculations based on the finite-
difference time-domain (FDTD) method [32]. For this paper,
we have implemented a stable version of the RCWA tech-
nique [33,34] with a highly improved convergence rate [35].
In this version, in addition to harmonics of the permittivities of
stacked layers, harmonics of the inverse of them are also used
in the calculations [35,36]. This modification is very important
since in this way usually a much smaller number of harmonics
is needed to reach the convergence which saves a huge amount
of computational time.

The thermal transfer between two gratings patterned in
semi-infinite substrates has been investigated using the scatter-
ing method [14,37–40]. The scattering trace formulas have also
been incorporated for structures made of two or even multiple
bodies [41–43]. Here, we consider the thermal transfer be-
tween a periodic array of finite-sized beams with three different
beam shapes and a planar substrate in a wide range of distances
from the far-field to near-field regime. Moreover, for compari-
son purposes we have investigated the results of approximation
methods such as the modified proximity approximation
[25–27,44] and far-field approximation [27] that have been
developed for thermal transfer calculations. The proximity
approximation used here is called modified in the sense that
it does consider the finite thickness of the beams and neglects
part of the thermal transfer that transmits through the beams.

In this paper, we consider periodic arrays of silicon carbide
(SiC) beams with rectangular, ellipsoidal, and triangular
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FIG. 1. (Color online) SiC beams with (a) rectangular, (b) trian-
gular, and (c) ellipsoidal cross-sections are placed in front of a SiC
substrate. The thickness of the beams is shown by t , and the spacing
between the beams and the substrate is denoted by d . The top width
of each beam is taken to be equal to the product of the width fraction
and array period f P . The distances involved for these structures are
defined in the figure.

cross-sections placed above a continuous slab of SiC
(see Fig. 1). Silicon carbide is a polar semiconductor that
supports a strong phononic resonance at a wavelength around
10 μm. At this wavelength, the permittivity swings from
positive to negative values. On the long wavelength side,
the permittivity is very large and positive, and optical Mie
resonances in the beams can enhance the thermal transfer
over planar structures [27]. On the other hand, at wavelengths
where the permittivity becomes negative the surface can
support surface phonon polariton (SPhP) excitations which are
electromagnetic waves coupled to collective lattice vibrations.
These surface waves can provide a significant boost in the
thermal transfer in the near-field regime.

Using our developed formalism [27], the thermal conduc-
tance between the SiC beams and the slab of SiC is numerically
evaluated. The details of the notations used for the geometrical
parameters involved are shown in Fig. 1. The variation in
thermal conductance with the width fraction of beams is
explored for different array periodicities. Specifically, we have
considered two different periodicities of P = 0.1 μm and
P = 10 μm, and the thickness of the beams in the considered
structures is taken to be t = 0.5 μm.

Based on Refs. [45,46], it is assumed that the relative
permittivity of SiC can be written as ε = ε∞ + ω2

0(εs − ε∞)
(ω2

0 − ω2 + iωδ)−1, with ε∞ = 6.7, εs = 10, δ/ω0 = 0.006,
and ω0/(2π ) = 2.38 × 1013 sec−1(12.6 μm). In addition, the
temperature that is assumed in the numerical calculations is
T = 315 K.

II. NUMERICAL IMPLEMENTATION

As was discussed in Ref. [27], computation of the thermal
transfer at each frequency involves a two-dimensional integra-
tion over the kx , ky plane. Corresponding to each point in the
kx , ky plane, an RCWA calculation should be carried out. We

know that if we incorporate n harmonics and our structure is
decomposed into L vertical layers, then each of the RCWA
calculations will need a computational time proportional to
n3L. This fact makes the computational time much longer
for the ellipsoidal and triangular beams as compared to the
rectangular beams. In addition to the increased number of
layers, having abrupt changes in thermal transfer requires
us to incorporate more harmonics. For the current paper, we
have used the VEGAS method for integration over the kx , ky

plane which is based on Monte Carlo important sampling of
the integrand function [47]. This method tries to minimize the
number of function calls and is identified as a fast integration
technique to maximize the speed of calculations.

We found that we needed to decompose the triangular and
ellipsoidal shaped beams into 100 layers to reach convergence.
The use of such a large number of layers will increase the
computational time proportionally. In order to do required
calculations in a decent amount of time, we ran our simulation
codes on a computer cluster using MPI [48] for parallelization.
Specifically, we used 40 nodes where each node is equipped
with Intel Westmere-EP processors (24 cores per node). We
also capitalized on the mirror symmetries present in our studied
structures to save time [49]. Moreover, because of the rapid
variations of thermal transfer across the period, especially for
large periods and for the case of triangular shaped beams, we
had to employ 81 harmonics in the RCWA-based simulations
in order to reach convergence with less than 5% error.

III. NUMERICAL RESULTS

At small periodicities (P = 0.1 μm), the thermal conduc-
tance changes negligibly across the period, and this is the case
for three different beam shapes considered. This is because
of the fact that effective medium theories [19–24] become
accurate at these small periodicities. Note that this does not
hold regarding the part of the thermal transfer that radiates
from the substrate and transmits through the array beams.
In fact this part of thermal transfer will not become uniform
across the period no matter how small the periodicity is chosen
as a result of discontinuity of the permittivity across the period
in this plane. However, the magnitude of this part becomes
negligible compared with the total thermal radiation that enters
the array in the near-field regime. Therefore, even using just
one harmonic in the regime of small periodicity (compared
with the surface phonon polariton resonance wavelength) will
lead to relatively accurate results.

On the contrary, this is not the case for large periodic-
ities. Figure 2 shows the contribution to the total thermal
conductance at different spatial locations x across the period.
The contributions are calculated in the plane right above
the substrate for different beam shapes. The width fraction
is assumed to be the same value of 0.4 in all cases and
the periodicity is assumed to be equal to 10 μm. Note that
since we have translational symmetry in the y direction, the
contributions to the thermal conductance do not vary along
that direction. Figure 2(a) shows the results when the beams
are spaced 1 μm from the substrate. This figure shows that
variations are quite smooth for this spacing. By decreasing the
distance further to 0.1 μm and reaching the near-field regime,
more abrupt changes can be observed in the contributions to
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FIG. 2. (Color online) Contributions to the thermal conductance
for the structure shown in Fig. 1 across a period for different beam
shapes, by assuming a constant value of f = 0.4 and periodicity
of P = 10 μm, when they are separated by (a) d = 1 μm and (b)
d = 0.1 μm.

the total thermal conductance across the period [see Fig. 2(b)].
Having such abrupt changes, especially in the case of triangular
shaped beams, 81 harmonics were needed for reaching the
convergence.

The results of proximity approximation are shown for
comparison in Fig. 3. This figure shows that there exists good
agreement with the exact results in the limit of small separation
[cf. Fig. 2(b) and Fig. 3(b)]. Note that these plots show the total
thermal conductance from the substrate to both the beams and
the space that lies beyond the beams.

The results of the calculations for the structure shown in
Fig. 1 with different values of periodicity and width fractions
are shown in Fig. 4 for the case of d = 100 μm. The total
thermal conductance for the small periodicity (P = 0.1 μm) is
monotonically increasing with increasing width fraction. This
comes from the fact that gratings with higher width fractions
feature more SiC material that is located near the adjacent
SiC substrate. This then naturally facilitates higher evanescent
coupling. However, for the larger periodicity (P = 10 μm), a
peak is achieved in thermal transfer for all three beam shapes at
a width fraction that is neither 0 nor 1. Noting that the phononic
resonance wavelength of the SiC is around 10 μm, this fact can
be attributed to the possibility to excite extra Mie resonances
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FIG. 3. (Color online) The results of modified proximity approx-
imation for variation of the thermal conductance across a period for
different beam shapes, by assuming a constant value of f = 0.4,
when they are separated by (a) d = 1 μm and (b) d = 0.1 μm. The
contributions to the total thermal transfer are calculated in the plane
right above the substrate for different beam shapes.

supported by the beams in the structures with large periodicity.
For comparison purposes, the thermal conductance is also
calculated based on the far-field approximation (FFA) [27].
As we expect, this approximation gives a lower value than
the exact calculation because it neglects contributions to the
thermal transfer arising from multiple reflections of the thermal
radiation [27]. However, the trend in the variation of the
thermal energy flux with width fraction is qualitatively similar
for all three beam shapes considered for both periodicities of
P = 0.1 μm and P = 10 μm.

Mie resonances can be identified as sharp peaks in the
spectral contributions to the thermal energy flux [27]. Such
resonances can enhance the thermal transfer and give rise to
the highest value of the thermal conductance for a nonunity
width fraction. In Fig. 5, the thermal conductance frequency
spectrum is shown for different beam shapes with the width
fraction of 0.7 and for both periodicities of P = 0.1 μm
and P = 10 μm. This figure clearly shows how the resonant
channels cause the thermal conductance to be higher in the
case of larger periodicity.
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FIG. 4. (Color online) Variation of total thermal conductance vs
width fraction for the structures shown in Fig. 1, with the periodicity
of (a) P = 10 μm and (b) P = 0.1 μm. Both the exact results when
the separation is d = 100 μm as well as the results based on FFA are
shown.

By decreasing the spacing between the array and substrate
to d = 0.25 μm, the thermal conductance for different width
fractions and periodicities increases (see Fig. 6). However, in
this regime the thermal conductance monotonically increases
with increasing width fraction. Note that the dependence is not
necessarily linear with increasing width fraction. However,
this increase becomes more linear for large values of the
periodicity. A similar linear variation with the width fraction
has recently been reported for the near-field thermal transfer
between the polar gratings [50]. This is consistent with
our intuition that for large values of the periodicity the
interactions between neighboring beams are negligible and that
the modified proximity approximation becomes more accurate
(see Appendix A). On the other hand, in the regime of small
periodicities the thermal transfer does not feature a linear
relationship with width fraction especially for the rectangular
shaped beams (see rectangular subsection from Appendix B).
However, for the triangular and ellipsoidal beams, the variation
becomes more linear with width fraction even in the low
periodicity regime (see triangular and ellipsoidal subsections
from Appendix B).

Figure 7 shows the dependence of the thermal conductance
on the spacing between the array and substrate for different
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FIG. 5. (Color online) Thermal conductance frequency spectrum
for the array of beams with (a) triangular, (b) ellipsoidal, and (c)
rectangular cross-sections for two periodicities of P = 10 μm and
P = 0.1 μm. The width fraction is assumed as 0.7, and the separation
is d = 100 μm.

beam shapes and for periodicities of P = 10 μm and
P = 0.1 μm. From the figure it is clear that the far-field
thermal transfer is higher for the arrays with larger periodicity
(P = 10 μm) for all three geometries that were considered.
This can again be attributed to the presence of extra Mie
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FIG. 6. (Color online) Variation of total thermal conductance vs
width fraction for the structures shown in Fig. 1, with the periodicity
of (a) P = 10 μm and (b) P = 0.1 μm. Results are shown when the
separation is d = 0.25 μm.

resonances in the periodic structure with larger periodicity.
For both the triangular and ellipsoidal shaped beams, this will
remain the case for very small distances as well. However,
the thermal transfer for the array of rectangular shaped
beams with smaller periodicity (P = 0.1 μm) remains the
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FIG. 7. (Color online) Variation of the total thermal conductance
as a function of distance for the structures shown in Fig. 1 with
f = 0.4 and dbeam = 0.5 μm. Calculations are done for two period-
icities of P = 0.1 μm and P = 10 μm.

same and is even higher compared with the one with larger
periodicity (P = 10 μm). Additional calculations show that a
further reduction in the array period will lead to a decrease
in the thermal transfer for the rectangular beams as well.
These results show that we will experience rapid reduction
in thermal transfer for ellipsoidal and triangular shaped beams
by decreasing the periodicity in clear contrast with the array
of rectangular shaped beams.

Aside from the magnitude of the thermal conductance, it is
of great interest to analyze the shape-dependent variation of
the thermal conductance with the array-to-substrate spacing
d. In the near-field, the thermal conductance varies as d−2 for
the case of rectangular shaped beams. From Fig. 7, it is clear
that this fact holds irrespective of the periodicity. Moreover, a
similar fact holds for triangular and ellipsoidal shaped beams
in which the near-field thermal transfer varies as d−1 and d−3/2,
respectively.

It is shown that for the case of two semi-infinite slabs that
are made of materials that support coupled surface modes
(CSM), the density of states (DOS) is proportional to d−2 in
the near-field regime [51]. This will lead to a similar variation
in the near-field thermal transfer versus spacing between the
slabs. In the limit of large periodicity, the variation of the
spacing across the period for different beam shapes considered
can be assumed as adiabatic changes. Based on this fact and by
using the proximity approximation, it is shown in appendix A
why the above-mentioned simple scaling laws hold for the
near-field thermal transfer. On the other hand, by exploration of
the limit of small periodicities, we have shown in Appendix B
why the same power laws hold in the low periodicity regime
for the three different beam shapes considered.

IV. CONCLUSIONS

In this paper, we have investigated the variation of thermal
transfer for three different periodic beam shapes. Using the
technique developed previously which is based on RCWA, we
obtained the thermal conductance between a slab of SiC and an
array of SiC beams of rectangular, triangular, and ellipsoidal
cross-section. The obtained results show that near-field thermal
conductance in the limit of large periodicity varies with d−2,
d−3/2, and d−1 with distance, respectively for rectangular,
ellipsoidal, and triangular cross-section. Moreover, results
show that near-field thermal transfer changes linearly with
width fraction in these cases. In the limit of small periodicity,
even though the scaling law remains nearly the same, the
thermal transfer decreases rapidly especially for the case
of triangular and ellipsoidal cross-section. In addition, the
thermal transfer will not linearly scale with width fraction
anymore, particularly for the case of rectangular shaped beams.
On the other hand, in the far-field regime we can easily see that
using arrays with larger periodicities but with the same width
fraction show increased thermal transfer. This is attributed to
the extra Mie resonances that these structures support when
they have a large periodicity.

The obtained numerical results are checked with analytical
solutions in both regimes of large and small periodicities,
where proximity approximation or effective medium theories
become increasingly accurate, respectively. Moreover, the far-
field thermal transfer behavior for different cross-sections is
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compared with far-field approximation technique. The results
of this paper can be directly applied for designing devices
which work based on near-field thermal transfer.
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APPENDICES

In the following appendices, we analytically investigate
the distance variation of thermal conductance in regimes of
large and small periodicities. We know that in the limit of
large periodicity, proximity approximation becomes accurate.
On the other hand, in the regime of very small periodicity
compared to the dominant resonance wavelength of the
material, the use of effective medium theories becomes viable.

APPENDIX A: THERMAL CONDUCTANCE
IN THE LIMIT OF LARGE PERIODICITY

The near-field thermal transfer between two semi-infinite
slabs will vary as S(z) = αz−2 with the separation z. This is
the case for the structures that are made of materials such as
SiC that support coupled surface modes (CSM) [51]. Using
this fact and based on the proximity approximation, near-field
thermal transfer can be calculated for different beam shapes in
the limit of large periodicity.

By considering only a single period, a representative beam
is assumed to extend from x = −f P/2 to x = f P/2 and to
have a thickness of t . Moreover, the smallest separation of the
beam from the substrate is assumed to be d.

For rectangular shaped beams, in which z = d, we have

S = 2

P

∫ f P/2

0

α

z2
dx

= f αd−2, (A1)

verifying the fact that near-field thermal transfer varies as d−2

for the rectangular shaped beams.
For triangular shaped beams, in which z = d + 2tx

f P
, we

have

S = 2

P

∫ f P/2

0

α

z2
dx

= f α

t

∫ d+t

d

dz

z2

∼= f αt−1d−1, (A2)

verifying the fact that near-field thermal transfer varies as d−1

for the triangular shaped beams.

For ellipsoidal shaped beams, in which z = d + t(1 −√
1 − 4x2

f 2P 2 ), we have

S = 2

P

∫ f P/2

0

α

z2
dx

= f α

d (d + 2t)
+ 2f αt

d3/2 (d + 2t)3/2 arctan

(√
2t + d

d

)

∼= f α

2dt
+ πf αt

d3/2 (2t)3/2
∼= πf α

2
√

2
t−1/2d−3/2, (A3)

verifying the fact that near-field thermal transfer varies as d−3/2

for ellipsoidal shaped beams.
We know that the assumption of S(z) = αz−2 is only valid

when the thickness of the structure is much larger than the
distance z [29]. Because of that, it may be argued that this
assumption does not hold for z values nearly equal or larger
than the thickness of the structure at that point. This fact can
be addressed by changing the upper bound of the integral from
z = d + t to a smaller value. However, the new bound will be
a fraction of thickness t . This causes the final result regarding
the power law to remain unchanged.

APPENDIX B: THERMAL CONDUCTANCE
IN THE LIMIT OF SMALL PERIODICITY

For sufficiently small periodicities, we know that a structure
with a periodically varying permittivity can be modeled as a
homogenous material with appropriate effective permittivities.
In the following, we show the material permittivity of the
array with εM,A and the one for the substrate with εS . In the
regime of very low periodicity, we can decompose the array
structure into layers with different effective permittivities.
Taking the fractional width of the beam material for the layer
at height z to be equal to f (z), this layer has effective permit-
tivities of εeff,‖ = 1 + f (z)(εM,A − 1) and εeff,⊥ = (1 + f (z)
(ε−1

M,A − 1))−1.
Treating these layers as anisotropic material will lead to

mixing of the s and p polarization. For simplification, we will
model them as isotropic material with εeff = 1 + f (z)(εM,A −
1) in our analysis. The results obtained from this approximation
may be a bit off from the exact ones. However, the emphasis
here is on the study of the scaling behavior with the separation.
For such a study, we expect the vertical variation of the filling
fraction of array material for the representation of each shape
to be the most important factor. Using this approximation, we
can view the structure as a 1D structure but with a graded index.
We know that the thermal transfer for such a 1D structure can
be calculated based on the following [29]:

S =
∫ ∞

0

∫ ∞

0

ε0V ω� (εS)

−π2
(θ (ω,T1) − θ (ω,T2)) βdβdω,

(B1)
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where V is given by

V = −ωμ0

8�(kz)|kz|2 �
{

[kz(1 − Rs)(1 + R∗
s ) − kzv|Ts |2]

+ β2 + |kz|2
εSk

2
0

[kz(1 − Rp)(1 + R∗
p) − kzv|Tp|2]

}
(B2)

in which Rp,s and Tp,s are the reflection and transmission
coefficients corresponding to p and s polarized waves, and
θ (ω,T ) = �ω/(exp(�ω/kBT ) − 1) is the mean energy of a
harmonic oscillator with angular frequency of ω at temperature
T . Moreover, β corresponds to the transverse component
of the wave vector. Finally, kz =

√
εSω2/c2 − β2 and kzv =√

ω2/c2 − β2 are z components of the wave vector in the
substrate and vacuum, respectively.

In the limit of large β, the contribution from s polarization
becomes negligible, and this expression reduces to

V = −ωμ0

4k2
0 |εS |2

�{εS(1 + Rp)(1 − R∗
p)}. (B3)

Calculation of the reflection coefficient is done through the
following analysis. We know that we can define an effective
matrix M for any planar structure [52], where the reflection
coefficient can be expressed in terms of its elements. This
matrix for the case of a planar structure composed of an air
gap and the array with its own MA matrix can be written as

M =
[

cosh (βd) k0
β

sinh (βd)
β

k0
sinh (βd) cosh (βd)

] [
mA,11 mA,12

mA,21 mA,22

]

=
[
m11 m12

m21 m22

]
. (B4)

In terms of M matrix elements, Rp can be written as

Rp =
m11 + βm12

k0
− εSm22 − εS

k0m21
β

m11 + βm12

k0
+ εSm22 + εS

k0m21
β

(B5)

such that

εS(1 + Rp)(1 − R∗
p)

=
4 |εS |2

(
m11 + βm12

k0

)(
m22 + k0m21

β

)∗

∣∣m11 + βm12

k0
+ εSm22 + εS

k0m21
β

∣∣2 . (B6)

Therefore, we will have

V = ωμ0

k2
0

∣∣∣∣m11 + βm12

k0
+ εSm22 + εS

k0m21

β

∣∣∣∣
−2

× �
{ (

m11 + βm12

k0

)∗ (
m22 + k0m21

β

)}
. (B7)

If we substitute the elements of matrix M from Eq. (B4), after
some simplifications, we will get the following:

V = ωμ0

k2
0

|cosh (βd) + εS sinh (βd)|−2 � (gm)

×
∣∣∣∣1 + gm

sinh (βd) + εS cosh (βd)

cosh (βd) + εS sinh (βd)

∣∣∣∣
−2

, (B8)

where parameter gm is defined in terms of MA matrix elements
as

gm
.=

mA,22 + k0mA,21

β

mA,11 + βmA,12

k0

. (B9)

Now it remains to calculate the MA matrix for the graded index
material.

Elements of matrix MA corresponding to the graded index
material should satisfy the following equations:

dmA,12

dz
= εAk0mA,11

dmA,21

dz
= β2

εAk0
mA,22

dmA,22

dz
= εAk0mA,21

dmA,11

dz
= β2

εAk0
mA,12 (B10)

with the following initial conditions:

mA,11 (0) = mA,22 (0) = 1

mA,12 (0) = mA,21 (0) = 0 (B11)

Note that the determinant of the MA matrix D = mA,11mA,22 −
mA,12mA,21 remains constant and equal to one as a function
of z.

1. Rectangular beams

If the array of beams has a width fraction of f , then εA =
1 + (εM,A − 1)f . In this case, the permittivity is not changing
with height, and the MA matrix is given by

MA =
[

cosh (βt) εAk0
β

sinh (βt)
β

εAk0
sinh (βt) cosh (βt)

]
. (B12)

Therefore, gm is equal to

gm = cosh (βt) + ε−1
A sinh (βt)

cosh (βt) + εA sinh (βt)
. (B13)

Plugging the above expression for gm into Eq. (B8), we arrive
at

−ε0ω

π2
V �(εS)

= 4

π2
�(γS)�(γA)e−2βd (1 − e−2βt )

× |(1 + γAe−2βt )(1 + γSe
−2βd )(1 − γA)

+ (1 − γAe−2βt )(1 − γSe
−2βd )(1 + γA)|−2 (B14)

where

γA = 1 − εA

1 + εA

γS = 1 − εS

1 + εS

. (B15)
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This is the generalized expression for the Swihart geometry
[29] for the case where the slab and substrate are of different
materials.

In the limit of large thickness, we have

−ε0ω

π2
V � (εS) = 1

π2

� (γS) � (γA) e−2βd

|1 − γSγAe−2βd |−2
. (B16)

By substitution of this expression into Eq. (B1), it can be easily
checked that the near-field thermal transfer will obey the d−2

law, as was discussed for the case of the Swihart geometry
[29].

2. Triangular beams

For the case of triangular shaped beams, if we assume the
thickness to be t , then the width fraction varies linearly with
height z as f (z) = f zt−1. Therefore, the permittivity varies
as

εA (z) = 1 + (εM,A − 1)f (z) = 1 + ζ−1t−1z, (B17)

where the parameter ζ
.= f −1(εM,A − 1)−1 is defined for later

use.
Using the above expression for permittivity, MA matrix

elements can be determined based on Eqs. (B10) and (B11).
Following the conventional procedure for solving these
equations [53], these elements can be expressed in terms
of Whittaker functions. However, we are only interested
in the parameter gm for thermal transfer calculation. After
simplifications this parameter can be expressed in terms of the
modified Bessel functions as

gm = K0 (ζβt) − I0 (ζβt) � (ζ,βt)

K1 (ζβt) + I1 (ζβt) � (ζ,βt)
(B18)

where

�(ζ,βt) = K0((ζ + 1)βt) − (1 + ζ−1)K1((ζ + 1)βt)
I0((ζ + 1)βt) + (1 + ζ−1)I1((ζ + 1)βt)

.

(B19)

In the limit of large thickness βt 
 1, we have

gm = 1 + f
1 − εM,A

2βt
+ O(β−2t−2). (B20)

Therefore, �(gm) = −f �(εM,A)/(2βt). This proves the fact
that near-field thermal transfer will vary as d−1t−1, even in the
regime of very low periodicity. We note that this result holds
when we neglect the s and p polarization coupling, however
numerical results show that the scaling behavior of thermal
transfer is very similar if we include this effect and treat the
problem exactly.

3. Ellipsoidal beams

In this case, the width fraction varies with height z as f (z) =
f

√
1 − (1 − z

t
)2 and permittivity can be written as εA(z) =

1 + (εM,A − 1)f (z). Similar to the previous case, the variation
behavior of MA matrix elements can be explored.

Analysis of asymptotic behavior of the parameter gm in this
case shows that for large values of thickness βt 
 1 we have

gm = 1 + 8f
1 − εM,A

9
√

βt
+ O(β−1t−1). (B21)

Therefore, �(gm) = −8f �(εM,A)/(9
√

βt). This proves the
fact that near-field thermal transfer will vary as d−3/2t−1/2,
even in the regime of very low periodicity. Again, we
should emphasize that this result holds when we treat layers
corresponding to the array of beams as isotropic material and
neglect the s and p coupling. Numerical results show that the
scaling behavior does not change that much by exact treatment
of the problem, as in the previous case.

[1] D. Polder and M. Van Hove, Phys. Rev. B 4, 3303 (1971).
[2] A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet,

Phys. Rev. Lett. 85, 1548 (2000).
[3] J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet,

Microscale Thermophys. Eng. 6, 209 (2002).
[4] M. Planck, The Theory of Heat Radiation (1914) (Kessinger

Publishing, LLC, 2007).
[5] N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V.

Kleiner, and E. Hasman, Science 340, 724 (2013).
[6] N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and

E. Hasman, Phys. Rev. Lett. 105, 136402 (2010).
[7] J. A. Schuller, T. Taubner, and M. L. Brongersma, Nat. Photon.

3, 658 (2009).
[8] N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and

E. Hasman, Phys. Rev. B 76, 045427 (2007).
[9] C. R. Otey, W. T. Lau, and S. Fan, Phys. Rev. Lett. 104, 154301

(2010).
[10] P. Ben-Abdallah and S.-A. Biehs, Appl. Phys. Lett. 103, 191907

(2013).

[11] P. Ben-Abdallah and S.-A. Biehs, Phys. Rev. Lett. 112, 044301
(2014).
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