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Abstract: We describe the evolution of a paraxial electromagnetic wave 
characterizing by a non-uniform polarization distribution with singularities 
and propagating in a weakly anisotropic medium. Our approach is based on 
the Stokes vector evolution equation applied to a non-uniform initial 
polarization field. In the case of a homogeneous medium, this equation is 
integrated analytically. This yields a 3-dimensional distribution of the 
polarization parameters containing singularities, i.e. C-lines of circular 
polarization and L-surfaces of linear polarization. The general theory is 
applied to specific examples of the unfolding of a vectorial vortex in 
birefringent and dichroic media. 
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1. Introduction  

Singular optics is an essential part of modern optics, which contributes to practically all 
fundamental wave phenomena [1−4]. Scalar wave fields are characterized by phase 
singularities (i.e., zeros of the intensity where the phase is undeterminate), such as optical 
vortices which have found a number of applications in classical and quantum optics [3,4]. 
Vector fields, e.g. electromagnetic or elastic waves, have more degrees of freedom and are 
also characterized by polarization singularities [5−9]. The generic types of the polarization 
singularities of transverse electromagnetic waves in 3D space are C-lines and L-surfaces, 
where the polarizations are, respectively, circular and linear. In the two cases, the polarization 
ellipse degenerates either to a circle (the eccentricity vanishes and the orientation is 
undeterminate) or to a line segment (the helicity vanishes and sign of polarization is 
undeterminate). 

The wave field singularities may form a rich variety of structures in rather simple systems. 
Even interference of only three plane scalar waves results in a lattice of optical vortices [10]. 
Clearly, propagation in inhomogeneous or/and anisotropic media significantly modifies the 
wave interference patterns and, hence, gives rise to a quite tangled singularities structures. 
Therefore, the wave field singularities in complex media are frequently studied within the 
statistical approach [7,9,11]. At the same time, for various applications it is very important to 
describe behavior of the specific singularities explicitly, i.e. in a deterministic way. There is a 
number of laboratory methods for generating and manipulating phase [3,4] and polarization 
[12,13] singularities in electromagnetic fields. Therefore, one of the currently important 
problems is to know how singularities evolve as the wave propagates through a medium. 
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Propagation of uniformly-polarized paraxial beams with phase vortices in inhomogeneous 
or anisotropic media have been studied recently [14−16]. While such beams represent 
independent localized modes of a smoothly inhomogeneous isotropic medium [14], phase 
vortices become drastically unstable in an anisotropic medium [15,16]. Even in the simplest 
uniaxial homogeneous medium, the phase vortex disappears, giving way to an essentially 
space-variant polarization pattern with a variety of polarization singularities [15,16]. The 
following features are characteristic for this system: (i) an initial phase singularity, (ii) a 
uniform initial polarization, and (iii) a double refraction in the medium, which destroys the 
phase singularity and transforms in to a set of polarization singularities. 

In the present paper we aim to investigate the dynamical behavior of the polarization 
singularities in a paraxial wave field propagating in a weakly anisotropic and, possibly, 
inhomogeneous medium. However, in contrast to [15,16], the problem is considered under 
opposite conditions: (i) a space-variant polarization pattern with polarization singularities in 
the incident field and (ii) absence of the phase singularities therein; (iii) we argue that double 
refraction is negligible in the system, while the variations of the normal modes parameters 
(phases and amplitudes) along the propagation direction lead to an effective dynamics of the 
polarization distribution and singularities. Our choice of the initial conditions is justified by 
two reasons. First, it is the presence of an effective technique using subwavelength gratings 
for generating arbitrary space-variant polarization patterns of the field [12,13]. Second, as it 
follows from [15,16], the phase singularities become unstable in anisotropic media, while the 
polarization ones experience a continuous evolution. 

By applying a dynamical approach, well-established in standard polarimetry [17,18], to a 
space-variant polarization pattern, we develop a powerful method for studying 3D complex 
polarization distributions. Assuming paraxial approximation and weak anisotropy, our 
approach reduces a challenging wave problem to the solution of effectively ordinary 
differential equation for the Stokes vector evolution along the wave propagation direction 
[18−26]. The equation is integrated in a homogeneous medium analytically, and, despite its 
simple form, it reveals an intricate evolution of the polarization singularities when the wave 
propagates through the medium. Thus, our method brings together polarimetry and singular 
optics, thereby giving rise to singular polarimetry. It may have promising applications − 
space-variant polarization patterns with singularities can be more informative and sensitive 
with respect to the medium properties. 

2. General theory 

2.1 Statement of the problem 

We will examine propagation of a paraxial monochromatic electromagnetic wave through a 
weakly anisotropic and, possibly, inhomogeneous (stratified) medium. We assume that the 
wave propagates along the z  axis, whereas the polarization ellipse lies nearly in the ( ),x y  

plane, so that one can apply Mueller or Jones calculus to the z -dependent evolution of 
polarization [17−19]. Under this assumption, the incident field is treated as a collection of 
parallel rays that have essentially independent phase and amplitude evolution. 
Mathematically, this means that we deal with a Cauchy problem with an initial distribution of 

the field in the ( ),x y  plane at 0z =  and some dynamical equation describing the evolution 

of the field along the z  axis. 
Let the polarization of the wave field at a point r  be described through the three-

component normalized Stokes vector, ( )=s s r , 2 1=s , representing the polarization state on 

the Poincaré sphere. Then, the Cauchy problem is given by the initial Stokes vector 
distribution, 

 ( ) ( )0, ,0 ,x y x y=s s , (1) 

and a dynamical equation 
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 m̂
z

∂ =
∂

s
s , (2) 

where ( )ˆ ˆm m , z= s  is a matrix operator which relates the Stokes-vectors values in two 

neighbor points. Although equations similar to Eq. (2) are well-established in classical 
polarimetry [18−26], they usually assume the uniform polarization distribution in the 
transverse plane, ( )0 , constx y =s , making the polarization evolution effectively one-

dimensional, ( )z=s s . In contrast, a non-uniform initial distribution (1) in our problem, 

( )0 , constx y ≠s , makes the polarization distribution essentially three-dimensional, 

( ), ,x y z=s s . Despite this, in order to find the complete distribution of the polarization in 3D 

space, ( )s r , one need to integrate an effectively ordinary differential equation (2) with initial 

conditions (1) for each point ( ),x y . 

The formalism of 3-component Stokes vector provides a natural representation for the 
polarization singularities [8,16]. Indeed, the north and south poles of the Poincaré sphere 
correspond to the right- and left-hand circularly polarized waves, while the equator represents 
linear polarizations with different orientations. Then, C- and L-type polarization singularities 
are determined, respectively, by the conditions 

 1 0s = , 2 0s = , (3) 

and 

 3 0s = . (4) 

From Eqs. (3) and (4) it is clear that in the generic case C- and L-singularities are, 
respectively, lines and surfaces in 3D space: the dimension of the singularity is the dimension 
of the space minus the number of constraints. Alternatively, one may refer to C-points and L-
lines in the ( ),x y  plane (2D space) and their evolution along the z  axis. Note also, that 

polarization singularities are essentially determined by the third component of the Stokes 
vector − conditions (3) are equivalent to 3 1s = , or 3s χ= , where 1χ = ±  is the wave 

helicity which indicates the sign of polarization in the C-point. Having a solution of the 
problem Eqs. (1) and (2), ( )=s s r , one immediately gets the space distribution of all 

polarization singularities from Eqs. (3) and (4). Note also that Eq. (1) implies that there are no 
phase singularities in the initial field, i.e. the intensity of the wave does not vanish: 

( ) ( )0 , , ,0 0I x y I x y= ≠  (otherwise, the Stokes vector s  would be undefined in nodal points). 

As we will see, the dynamical equation (2) ensures that the nodal points cannot appear at 
0z ≠  as well: ( ), , 0I x y z ≠ . 

Our approach of z -dependent evolution, Eqs. (1) and (2), is justified assuming that the 
refraction and diffraction processes are negligible. Let the wave field be characterized by two 
scales: the wavelength λ  and a typical scale of its transverse distribution in the ( ),x y  plane, 

w λ� . At the same time, the medium anisotropy is characterized by a typical difference 
between the dielectric constants corresponding to the normal modes, 1ν � . Then, diffraction 
and refraction effects are negligible if: (i) the propagation distance is much smaller than the 
typical diffraction distance (the Rayleigh range), 2 /Rz z w λ=�  and (ii) the propagation 
distance is much smaller than the distance at which the double refraction of the anisotropic 
medium causes transverse shifts comparable with w , i.e. /Dz z w ν≡� . Note that the 

characteristic distance of the polarization evolution due to Eq. (2), /Pz λ ν= , is much smaller 
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than Dz  and can be small as compared to Rz . Thus, our approach is effective within the range 
of distances 

 ,P R Dz z z z≤ � . (5) 
For instance, for a visible laser beam with 0.6 mλ μ�  and width 1mmw �  propagating 

through Quartz (where anisotropy is 0.03ν � ), we have ~ 1.5mRz , ~ 30 mmDz , and 

0.02 mmPz � . This gives the propagation range 0.02 mm 30 mmz≤ � . 

2.2 Equation for the Stokes vector evolution 

To derive the evolution equation (2) for the 3-component Stokes vector s , let us start with the 

4-component Stokes vector, S
�

. Hereafter, 4-component vectors are indicated by arrows, and 
the last three components of a 4-vector form usual 3-component vector, so that 

( ) ( )0 1 2 3 0, , , ,S S S S S S= ≡ S
�

. In the most general case of a linear anisotropic medium the 

Stokes vector S
�

 obeys the following evolution equation [18−26]: 

 M̂
S

S
z

∂ =
∂

�

�

, (6) 

where M̂  is the differential Mueller matrix (a 4 4×  real matrix) which summarizes optical 
properties of the medium. These are given by 2 2×  complex dielectric tensor: 

 0
0 2

0

ˆˆ ˆ xx xy

yx yy

I
ε ν ν

ε ε ν
ν ε ν
+⎛ ⎞

= + ≡ ⎜ ⎟+⎝ ⎠
. (7) 

Here 0 2̂Iε  is the main, isotropic part proportional to the unit matrix ( )2̂ diag 1,1I = , ν̂  is a 

small anisotropic part (which effectively represents the differential Jones matrix), and we 
assume 0Im 0ε =  (small dissipation is ascribed to the anisotropic term). The differential 
Mueller matrix can be represented as [19,24,26] 

 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

Im Im Im Im

Im Im Re Re
M̂

Im Re Im Re

Im Re Re Im

G G G G

G G G G

G G G G

G G G G

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

. (8) 

Here the complex 4-component vector ( )0 ,G G= G
�

 is expressed via components of the 

dielectric tensor (7) as 

 ( ) ( ) ( ) ( )0

0

, , ,
2

T

xx yy xx yy xy yx xy yx

k
G iν ν ν ν ν ν ν ν

ε
⎡ ⎤= − + − + −⎣ ⎦

�

, (9) 

where 0k  is the wave number in vacuum, and components of quantities (7)−(9) can be z -

dependent. Vector G
�

 gives decomposition of the anisotropy tensor ν̂ , Eq. (6), with respect to 
the basis of Pauli matrices, and establishes close relations between polarization optics 
(Mueller and Jones calculus) and relativistic problems with the Lorentz-group symmetry 
[20,24,26−31]. In particular, Eq. (6) for the Stokes vector evolution is similar to the 
Bargman−Michel−Telegdi equation for relativistic spin precession [26,32]. 
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The matrix M̂  can be decomposed into three parts responsible for different optical 
properties of the medium [18−26]: 

 

1 2 3

1 3 2
0 4

2 3 1

3 2 1

0 Im Im Im 0 0 0 0

Im 0 0 0 0 0 Re Reˆ ˆM Im
Im 0 0 0 0 Re 0 Re

Im 0 0 0 0 Re Re 0

G G G

G G G
G I

G G G

G G G

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟= + +
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

, (8') 

where ( )4̂ diag 1,1,1,1I =  is the unit matrix. The first, diagonal part, proportional to 0ImG , 

describes the common attenuation of the field intensity. The second, symmetric part, related 
to components of ImG , describes the phenomenon of dichroism, i.e. the selective attenuation 

of different field components. Finally, the third, antisymmetric part of M̂ , related to 
components of ReG , is responsible for the medium birefringence. The component 0ReG  
does not contribute to the matrix (8), since it causes merely an additional total phase of the 
wave field, which does not affect the polarization state and is lost in the Stokes vector 
representation. 

Evolution of the normalized 3-component Stokes vector can be derived immediately from 
Eqs. (6) and (8) by differentiating the definition 0/ S=s S . As a result, we find that the 3-
component Stokes vector obeys the following equation [26]: 

 ( )
z

∂ = + × ×
∂

s
Ω s Σ s , (10) 

where we denoted Re ≡G Ω  and Im ≡G Σ . This equation represents the basic evolution 
equation (2) in the general case. [In terms of Eq. (2), the matrix m̂  is given by 
mij ijk k ijk klm l me e e s= − Ω − Σ , where indices take values 1, 2,3  and ijke  is the unit antisymmetric 

tensor.] Thus, all the evolution on the Poincaré sphere can be described by the precession 
equation (10) which includes two real vectors Ω  and Σ  responsible for the birefringent and 
dichroic effects, respectively. Equation (10) conserves the absolute value of the normalized 
Stokes vector under the evolution: 2 / 0z∂ ∂ =s . The common attenuation, 0ImG , naturally, 
does not affect the normalized Stokes vector and is absent in Eq. (10). Note also that Eq. (10) 
resembles the Landau−Lifshitz equation describing the nonlinear spin precession in 
ferromagnets [33], but, in contrast to the latter, Eq. (10) contains two different effective fields 
Ω  and Σ . In inhomogeneous medium ( )z=Ω Ω  and ( )z=Σ Σ . 

2.3 Solutions in a homogeneous birefringent medium 

In a homogeneous non-dissipative birefringent medium, Eq. (10) takes simple form of the 
classical precession equation [22,23,25]: 

 
z

∂ = ×
∂

s
Ω s . (11) 

According to Eq. (11), as the wave propagates along the z  axis, the Stokes vector s  
precesses with a constant spatial frequency Ω  about the fixed direction /= Ωω Ω . In terms 
of the medium properties, direction ω  and absolute value Ω  characterize, respectively, the 
type and the strength of the medium birefringence. In so doing, two “stationary” solutions 

± = ±s ω  on the Poincaré sphere correspond to mutually-orthogonal eigenmodes of the 
medium. In particular, ( )0,0,= ±1ω  and ( )1 2, ,0= ω ωω  correspond, respectively, to the 

cases of circularly- and linearly-birefringent medium. Equation (11) with initial condition (1) 
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can be easily integrated: ( ) ( ) ( )0
ˆ, , ,x y z R z x y= Ω
ω

s s , where ( )R̂ zΩ
ω

 is the operator of 

rotation about ω  on the angle zΩ . Using the Rodrigues rotation formula [34], we arrive at 

 ( ) ( ) ( ) ( ) ( )0 0 0cos sin 1 cosz z z= Ω + × Ω + − Ω⎡ ⎤⎣ ⎦s s ω s ωs ω . (12) 

Together with Eq. (1), this equation gives solution for the Stokes-vector distribution in space. 
In a circularly birefringent medium, distribution of polarization singularities in ( ),x y  

plane does not vary when the wave propagates along the z  axis. Indeed, the helicity of the 
wave, given by the third component of the Stokes vector, is invariant of Eqs. (11) and (12), 

3 consts = , when ( )0,0,= ±1ω . Thus, C-lines ( 3 1s = ± ) and L-surfaces ( 3 0s = ) are parallel 

to the z  axis in this case and are trivially determined by the initial distribution (1) with 
Eqs. (3) and (4): 

 01 0s = , 02 0s = , (13) 

and 

 03 0s = . (14) 

On the contrary, polarization singularities evolve in a linearly-birefringent medium, cf. 
[15,16]. As it is clear from Eq. (12), this evolution is periodic in z  with the period 2 /π Ω . In 
fact, L-lines and C-points in ( ),x y  plane come back to the initial locations after /π Ω  period, 

corresponding to the half-wavelength plate. In so doing, C-points only change their signs after 
/π Ω  period. One can also note that under propagation at / 2π Ω  distance (corresponding to 

the quarter-wavelength plate) C-points give their place to points of L-lines, while some points 
of L-lines give place to C-points. To determine the whole 3D structure of polarization 
singularities note that vector ( )1 2, ,0= ω ωω  can be reduced to ( ),0,0= 1ω  by a fixed rotation 

of coordinate axes in the ( ),x y  plane, which brings the anisotropy tensor ν̂ , Eq. (7), to the 

principal axes. Then, substituting solution (12) with ( ),0,0= 1ω  into Eqs. (3) and (4), we 

obtain equations determining C-lines and L-surfaces: 

 01 0s = , ( ) 02

03

tan
s

z
s

Ω = , (15) 

and 

 ( ) 03

02

tan
s

z
s

Ω = − . (16) 

In contrast to Eqs. (13) and (14), these rather simple equations reveal non-trivial z -dependent 
dynamics of polarization singularities (see examples in Section 3.2). 

2.4 Solutions in a homogeneous dichroic medium 

In a homogeneous dichroic medium, with selective attenuation of modes but without a phase 
difference between them (i.e., 0=Ω ), Eq. (10) takes the form 

 ( )
z

∂ = × ×
∂

s
s Σ s , (17) 

Similarly to Eq. (11), this equation has two “stationary” solutions ± = ±s σ  (where /= Σσ Σ ), 
which determine eigenmodes of the medium. However, in contrast to the birefringent-medium 
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case, solution −s  is “unstable”. As we will see, solutions of Eq. (17) move on the Poincaré 
sphere away from −s  towards +s . Thus, the dichroic medium is a polarizer, in which only one 
mode (given by +s ) survives at long enough propagation distances. Equation (17) can be 
integrated analytically at const=Σ , which yields the solution (see Appendix): 

 
( ) ( )

( ) ( )
( ) ( )

0 0 0
0

0 0 0 0

1 2 12

1 1 1 1

z z

z z z z

A e A A e

A e A e A e A e

Σ −Σ

Σ −Σ Σ −Σ

+ − − −
= +

+ + − + + −
s s σ , (18) 

where 0 0A = s σ . As seen from Eq. (18), all solutions with 0
−≠s s move in the plane given by 

vectors 0s  and σ , and tend exponentially to +s  point. Supplied with the initial distribution 
(1), Eq. (18) gives the Stokes-vector distribution in 3D space. 

In contrast to the birefringent-medium case, polarization singularities vary along z  both in 
circularly and linearly dichroic medium. More precisely, in a circularly-dichroic medium, 

( )0,0, 1= ±σ , C-points in the ( ),x y  plane do not evolve with z  since circular polarizations 

correspond to “stationary” solutions ±s  in this case. Thus C-lines in 3D space are parallel to 
the z  axis and determined analogously to Eq. (13): 

 01 0s = , 02 0s = . (19) 

At the same time, L-lines in the ( ),x y  plane evolve with z , and L-surfaces in 3D space are 

determined by Eq. (4) with (18): 

 
( ) ( )
( ) ( )

0 0

0 0

1 1
0

1 1

z z

z z

A e A e

A e A e

Σ −Σ

Σ −Σ

+ − −
=

+ + −
, (20) 

where 0 0 33A s σ= . Equation (20) can be resolved with respect to z , which yields 

 ( ) 0 33tanh z s σΣ = − . (21) 

Conversely, in a linearly-dichroic medium, where ( )1,0,0=σ  in the principal-axes 

coordinate frame, L-surfaces are parallel to the z  axis and are given by Eq. (14): 

 03 0s = . (22) 

At the same time, C-points in the ( ),x y  plane evolve with z , and 3D C-lines are determined 

by Eq. (3) with (18), i.e. 

 
( ) ( )
( ) ( )

0 0

0 0

1 1
0

1 1

z z

z z

A e A e

A e A e

Σ −Σ

Σ −Σ

+ − −
=

+ + −
, 02 0s = , (23) 

where 0 01A s= . Resolving of this equation yields: 

 ( ) 01tanh z sΣ = − , 02 0s = . (24) 

Thus, unlike birefringent medium, evolution of the Stokes vector and polarization 
singularities in dichroic medium is monotonic rather than periodic, see examples in 
Section 3.3. It is described by hyperbolic functions, which appear naturally in the Lorentz-
group representation of polarization optics [30,31]. 
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3. Application: Evolution of a vectorial vortex 

3.1 Initial polarization distribution 

As a characteristic example of initial space-variant polarization pattern, Eq. (1), we consider a 
vectorial vortex, which possesses a singularity in the polarization distribution [12,13]. The 
Stokes-vector distribution (1) of a vectorial vortex at the origin can be given as 

 ( ) ( )2
01 1 coss f mρ ϕ δ= − −⎡ ⎤⎣ ⎦ ,  

 ( ) ( )2
02 1 sins f mρ ϕ δ= − −⎡ ⎤⎣ ⎦ , (25) 

 ( )03s f ρ= .  

 
m = −3 m = −2 m = −1

m = 1 m = 2 m = 3

 

Fig. 1. Distributions of Stokes vectors (upper panel) and of polarization ellipses (lower panel) for 
vectorial vortices Eqs. (25) with a C-point in the center, Eq. (26), at different values of azimuthal 
index m . Hereafter, 0δ =  and directions of Stokes vectors are naturally depicted in the real space 

with the 1s , 2s , and 3s  components pointing along the x , y , and z  axis, respectively. 

#89134 - $15.00 USD Received 29 Oct 2007; revised 13 Dec 2007; accepted 15 Dec 2007; published 8 Jan 2008

(C) 2008 OSA 21 January 2008 / Vol. 16,  No. 2 / OPTICS EXPRESS  703



 

Here ( ),ρ ϕ  are the polar coordinates in the ( ),x y  plane, ( )f ρ  is a radial distribution 

function, ( ) 1f ρ ≤ , 1, 2,...m = ± ±  is the integer number (the azimuthal index of the 

polarization distribution), and δ  indicates a fixed angle between the distribution and x  axis. 
In the above distribution, the Stokes vector experiences m  complete rotations along a loop 
path enclosing the vortex center. Therefore, the distribution possesses the 1m − -fold 

rotational symmetry (one turn is effectively compensated by a 2π  rotation of local radial 
vector), Fig. 1. At the same time, the corresponding polarization pattern (i.e. the distribution 
of polarization ellipses in the ( ),x y  plane) reveals 2m − -fold symmetry, Fig. 1. This is 

because a complete turn of the Stokes vector corresponds to a half-turn of the polarization 
ellipse; as a result, the symmetry of the polarization distribution is characterized by the order 
of 2 modmπ π π− . Note that the cases 1m =  and 2m =  are peculiar: the vectorial vortex 

represents an azimuthally-symmetric Stokes-vector and polarization distributions, 
respectively. 

Points Cρ ρ=  and Lρ ρ= , such that ( ) 1Cf ρ χ= = ±  and ( ) 0Lf ρ =  correspond to C- 

and L-type singularities in the initial distribution (25). We will concentrate on a simple case of 
a single C-point with the right-hand circular polarization at the origin, so that ( )0f χ=  and 

( )0 1f ρ< <  at 0ρ > . This case can be modeled using the function 

 

( )2
1 /

f
χ

ρ ρ∗
=

+
, (26) 

where ρ∗  characterizes the radial scale of the distribution. The vectorial vortex (25) and (26) 
with the right-hand polarization in the center, 1χ = , is characterized by the optical vortex 
(phase singularity) in the left-hand polarized component of the field, and vice versa. Below, 
we will examine the behavior of polarization singularities in homogeneous anisotropic media 
considered in Sections 2.3 and 2.4, assuming the initial polarization distribution of Eqs. (25) 
and (26). 

3.2 Homogeneous linearly-birefringent medium 

Since the behavior of polarization singularities in a circularly-birefringent medium is trivial, 
Eqs. (13) and (14), let us consider the case of linearly-birefringent medium. Substituting the 
initial Stokes-vector distribution, Eqs. (25), into Eqs. (15) and (16) we obtain the equations 
describing C-lines and L-surfaces in space. For C-lines, this yields 

 ( ) ( )2
1 cos 0f mρ ϕ δ− − =⎡ ⎤⎣ ⎦ , ( ) ( ) ( )

( )
21 sin

tan
f m

z
f

ρ ϕ δ
ρ

− −⎡ ⎤⎣ ⎦Ω = , (27) 

whereas L-surfaces are described by equation 

 ( ) ( )
( ) ( )2

tan
1 sin

f
z

f m

ρ

ρ ϕ δ
Ω = −

− −⎡ ⎤⎣ ⎦

. (28) 

Assuming the initial distribution with radial function (26), we find that solutions of 
Eqs. (27) represent curves lying in the azimuthal planes constϕ =  and given by equations 
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( )2 1

2n

n

m

π
ϕ δ

+
= + , ( ) ( )

( )
2

*

1
tan

f
z

f

ρ ρχ
ρ ρ

−
Ω = ± = ± . (29) 

Here 0,1,..., 2 1n m= − , signs “ ± ” in the second equation correspond to even and odd n , 

respectively. Note that ( )tan zΩ  is either positive or negative at each value of z , and, hence, 

only solutions with either even or odd n  are valid each time. They alternate after a period of 
/ 2π Ω , whereas all the structure of polarization singularities (up to sign of the polarization) 

has a period of /π Ω . L-surfaces (28) separate C-lines with different helicities χ  (and space 

areas with positive and negative 3s ) and represent azimuthally-corrugated surfaces. Figure 2 
shows an example of the polarization singularities described by Eqs. (29) and (28). The initial 
C-point of m th order splits into m  branches under the evolution along z . This reveals an 
instability of higher-order C-points during evolution in an anisotropic medium. Only C-points 
with of a minimal order, 1m = ± , are generic [5−9]. 
 

0

1

2
2.5

0

0

0.5

1.5

1

1

−1

−1

ξ

η

ζ

 
Fig. 2. C-lines and L-surfaces under propagation of the vectorial vortex, Eqs. (25) and (26), 
with 3m =  and 1χ =  in a linearly-birefringent medium with ( ),0,0= 1ω . Dimensionless 

coordinates /xξ ρ ∗= , /yη ρ ∗= , and /zζ π= Ω  are used, whereas red and blue colors 

indicate C-lines with 1χ =  and 1χ = − , respectively. 

 
Similarly to [15], one can verify conservation of the total topological charge by tracking 

the polarization singularities evolution. Topological charge, γ , characterizes each C-point in 
plane constz =  and is equal to the product of its local azimuthal index, m , and sign of the 
polarization, 3sχ = : mγ χ= . The total topological charge, ( )a

a

γΓ =∑ , should be z -

independent [7,9,15]: 

 ( ) ( ) consta a

a

m χΓ = =∑ . (30) 
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ζ = 0.0 ζ = 0.3

ζ = 0.7 ζ = 1.0

x

xx

x

x

x

x x

 

Fig. 3. Distributions of Stokes vectors, Eq. (12), (upper panel) and of polarization ellipses (lower 
panel) for vectorial vortex, Eqs. (25) and (26), with 3m =  and 1χ = , propagating in a linearly-

birefringent medium with ( ),0,0= 1ω , Fig. 2. Distributions are shown at different propagation 

distances /zζ π= Ω  within half-period. Red and blue colors indicate areas with right-hand ( 3 0s > ) 

and left-hand ( 3 0s < ) polarizations. C-points are marked by dots (upper panel) and crosses (lower 

panel). 
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Here a  indicates different C-points and summation is taken over whole plane constz = . 
Figure 3 demonstrates polarization and Stokes-vector distributions, Eq. (12), for a vectorial 
vortex evolving in a linearly birefringent medium corresponding to Fig. 2. Conservation of 

3Γ =  is seen − initial C-point with 3m =  and 1χ =  is split into three C-points with 1m =  
and 1χ = ; then, crossing of L-surface causes simultaneous flip of helicity and azimuthal 
index: three C-points with 1m = −  and 1χ = −  occur; finally, they merge into single C-point 
with 3m = −  and 1χ = − . 

3.3 Homogeneous dichroic media 

Substituting initial distribution Eqs. (25) into Eqs. (18)−(24), we get the Stokes-vector 
distribution and polarization singularities in homogenous dichroic medium. In a circularly-
dichroic medium, C-points do not evolve with z , Eq. (19), whereas the behavior of L-
surfaces is given by Eq. (21) with Eq. (25): 

 ( ) ( ) 3tanh z f ρ σΣ = − . (31) 

Thus, the surface lies in the 0z <  or 0z >  half-space when 3 0σ >  or 3 0σ < , respectively. 
Structure of the polarization singularities with initial distribution (26) in a circularly-dichroic 
medium is shown in Fig. 4a. 
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Fig. 4. C-lines and L-surfaces under propagation of the vectorial vortex, Eqs. (25) and (26), with 

3m =  and 1χ =  in a dichroic medium. Pictures (a) and (b) correspond to circularly- and linearly-

dichroic media with ( ),0, 1= 0 −σ  and ( ),0,0= 1σ , respectively. Dimensionless coordinates 

/xξ ρ ∗= , /yη ρ ∗= , and zζ = Σ  are used. 

 
In a linearly-dichroic medium, L-surfaces are trivial, Eq. (22), whereas C-lines are 

described by Eqs. (24) with Eq. (25): 

 ( ) ( ) ( )2tanh 1 cosz f mρ ϕ δΣ = − − −⎡ ⎤⎣ ⎦ , ( ) ( )21 sin 0f mρ ϕ δ− − =⎡ ⎤⎣ ⎦ . (32) 

Assuming initial distribution with the radial function (26), we find that, similarly to Eq. (29), 
solutions of Eqs. (32) represent curves lying in the azimuthal planes constϕ = : 

 n

n

m

πϕ δ= + , ( ) ( )2tanh 1z f ρΣ = −∓ , (33) 

Here 0,1,..., 2 1n m= − , and signs “ ∓ ” in the second equation correspond to even and odd n , 
respectively. It is easily seen that solutions with even and odd n  are realized, respectively, at 
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0z <  and 0z > , Fig. 4b. Thus, similarly to the case of linearly-birefringent medium, the 
initial C-point of the m th order is split into m  C-points with unit azimuthal indices, Fig. 5. 
The total topological charge, Eq. (30), is also conserved in this process. 

 
ζ = 0.0 ζ = 1.0

x x

x

x

 

Fig. 5. Distributions of Stokes vectors, Eq. (18), (upper panel) and of polarization ellipses (lower 
panel) for vectorial vortex, Eqs. (25) and (26), with 3m =  and 1χ = , propagating in a linearly-

dichroic medium with ( ),0,0= 1σ , Fig. 4b. Distributions are shown at different propagation 

distances zζ = Σ . C-points are marked by dots (upper panel) and crosses (lower panel). 

 

4. Conclusion 

To summarize, we have developed an efficient formalism describing the evolution of non-
uniformly polarized waves in anisotropic media. Provided that refraction and diffraction 
effects are negligible, our method reduces the initial wave problem to the integration of a 
simple differential equation for the Stokes-vector evolution. Polarization singularities are 
readily found in the resulting space distribution of the Stokes vector. The evolution equation 
has been integrated analytically for the characteristic cases of homogeneous birefringent and 
dichroic media. 

We have applied the general formalism to the evolution of a polarization vortex in 
birefringent and dichroic media. The resulting space polarization patterns describe remarkable 
behavior of polarization singularities as the wave propagates in the medium. In particular, we 
showed the splitting of a higher-order vectorial vortex into a number of the minimal-order 
generic vortices and verified conservation of the topological charge under that process. 

The fine behavior of the wave-field singularities in anisotropic media can be used for 
needs of polarimetry, and, perhaps, will enable one to increase the sensitivity of classical 
polarimetric methods. 

Finally, though we considered a rectilinear propagation of the wave along the z  axis, our 
approach is also valid for the geometrical-optics wave propagation along smooth curvilinear 
rays in large-scale inhomogeneous media. In this case, the problem is reduced to the same 
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form if one involves a local ray coordinate system with basis vectors being parallel-
transported along the ray [26]. 

Note added.– Recent paper [35] with related arguments came to our attention after 
submission of this work. 
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Appendix: Solution of equation (17) 

To integrate Eq. (17), note that the unit vector s  can be represented as 

 ( )A= − ×s σ B σ . (A1) 

Here we introduced two auxiliary quantities: scalar A = sσ  and vector ( )= ×B s σ . From 

Eq. (17), it can be easily seen that they obey equations 

 ( )21
A

A
z

∂ = Σ −
∂

, (A2) 

 A
z

∂ = −Σ
∂
B

B . (A3) 

By integrating Eq. (A2) we obtain 

 
( ) ( )
( ) ( )

0 0

0 0

1 1

1 1

z z

z z

A e A e
A

A e A e

Σ −Σ

Σ −Σ

+ − −
=

+ + −
, (A4) 

where 0 0z
A A

=
= . Substituting Eq. (A4) into Eq. (A3) and performing integration, we arrive at 

solution for B : 

 
( ) ( ) 0

0 0

2

1 1z zA e A eΣ −Σ=
+ + −

B B , (A5) 

where 0 0z=
=B B . Substituting Eqs. (A4) and (A5) into Eq. (A1) yields solution (18). 
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