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Abstract: We investigate the thermal transfer between finite-thickness
planar slabs which support surface phonon polariton modes (SPhPs).
The thickness-dependent dispersion of SPhPs in such layered materials
provides a unique opportunity to manipulate and enhance the near field
thermal transfer. The key accomplishment of this paper is the development
of an ab-initio coupled mode theory that accurately describes all of its
thermal transfer properties. We illustrate how the coupled mode parameters
can be obtained in a direct fashion from the dispersion relation of the
relevant modes of the system. This is illustrated for the specific case of a
semi-infinite SiC substrate placed in close proximity to a thin slab of SiC.
This is a system that exhibits rich physics in terms of its thermal transfer
properties, despite the seemingly simple geometry. This includes a universal
scaling behavior of the thermal conductance with the slab thickness and
spacing. The work highlights and further increases the value of coupled
mode theories in rapidly calculating and intuitively understanding near-field
transfer.
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1. Introduction

Obtaining new methods to control the thermal transfer is of great concern for a variety of im-
portant applications, including magnetic heat assisted lithography and recording [1,2] to energy
conversion [3,4] and thermal emitters [5,6]. It was demonstrated that near-field effects [7–9] can
be harnessed to achieve dramatic increases in thermal transfer compared over conventional far-
field radiative transfer following Planck’s law [10]. These enhancements are facilitated through
opening new channels for transfer in closely-spaced bodies that support evanescent optical
modes [7]. Fundamentally new levels of control can be achieved on thermal transfer by tailor-
ing the dispersive properties of such systems [11, 12]. Even though, near-field thermal transfer
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Fig. 1. (a) Schematic of the Swihart geometry which is composed of a thick slab of SiC
at a temperature T1 separated by a vacuum gap of width d from a slab of SiC of thickness
t and at a temperature T2. The profiles of the three supported SPhP modes are shown in
this structure in the limit of negligible coupling (b) Schematic of the mode profiles at a
frequency right below the SPhP resonance frequency for three special cases of (i) t = 0.5d
(ii) t = d (iii) t = 2d. Curves show the normalized absolute value of the magnetic field.

for planar structures have been calculated for different thicknesses and the law of its variation
has been considered

Rigorous theory exists to quantify thermal transfer between systems of arbitrary shape and
number of components [13]. However, exact numerical solutions for arbitrary structures re-
quires tremendous amount of computational power. As a result, near-field thermal transfer cal-
culations have been limited to relatively basic geometries such as planar-to-planar [7, 14–16]
as well as planar structures to a sphere [17–19], a cylinder [19], and even a cone [19]. Ref-
erence [20] reviews some of the recent results in different considered structures. Approximate
theories have been developed to make thermal transfer calculations more tractable and the prox-
imity method is perhaps the most popular [1, 21, 22]. Unfortunately, this method cannot be
applied to sub wavelength structures and fails in the far-field regime. Another approximation
proposed for calculating the near field thermal transfer is coupled mode theory [23]. Whereas
this method provides some valuable intuition on the relevant modes that control the transfer, the
coupled mode parameters were obtained from best fits to a full fluctuation dynamics calcula-
tion [24]. Here, we illustrate how these parameters can be obtained in a direct fashion from the
dispersion relation of the relevant modes of the system. This significantly increases the value of
coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.

In this letter, we consider the specific case of a SiC slab that is closely-spaced to an under-
lying substrate slab (see Fig. 1(a)). This system has been studied in the context of supercon-
ductivity and is termed the Swihart geometry [25]. SiC is a polar material and planar structures
support surface waves termed surface phonon polaritons (SPhPs). These modes provide the
dominant channels for near-field thermal transfer [8].
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2. Exact theory

Near-field transfer is critically-dependent on the nature of the relevant modes and their disper-
sive properties, which are well-established for the Swihart geometry [26]. Figure 1(b) illustrates
the mode profiles at a frequency just below the SPhP frequency ωSPhP and for three different
thicknesses. These mode profiles results from a hybridization of the individual interface modes
shown in Fig. 1(a). The nature of the hybridization evolves as the ratio of t/d is increased.
Whereas for small t/d the mode profile resembles that of a slab-mode, for large t/d the mode
profile closely mimics a gap mode. When t is approximately equal to d, there is strong hy-
bridization of these modes. This hybridization can lead to an increased thermal transfer, which
will be shown. The presented coupled mode theory will provide insights into this fact.

Using the green function method, combined by the fluctuation dissipation theorem [27, 28]
(Appendix A), thermal transfer between the two bodies can be written as:

S =

∞̂

0

∞̂

0

ε0ωℑ(ε)

2π3 (Θ(ω,T1)−Θ(ω,T2))V dβdω (1)

where in that V is given by:

V =
−ωµ0

8ℑ(kz) |kz|2
ℜ

{[
kz (1−Rs)(1+R∗s )− kzv |Ts|2

]
+

β 2 + |kz|2

εk2
0

[
kz (1−Rp)

(
1+R∗p

)
− kzv

∣∣Tp
∣∣2]} (2)

in which Rp,s and Tp,s are reflection and transmission coefficients corresponding to p and
s polarized waves and Θ(ω,T ) = h̄ω/(exp(h̄ω/kBT )−1) is the mean energy of a harmonic
oscillator with angular frequency of ω at temperature T . Moreover, β corresponds to the trans-
verse component of the wave vector. Finally, kz =

√
εω2/c2−β 2 and kzv =

√
ω2/c2−β 2 are

z components of the wave vector in SiC and vacuum, respectively.
These relations can be simplified in the near field regime. In this regime the contribution by

the s polarized waves becomes negligible compared with the p polarized ones. This comes back
to the fact that only p polarized waves support SPhP resonances. In this regime, if we define the
ratio ζ as ζ = (1− ε)/(1+ ε), the thermal transfer can be written as:

S =

∞̂

0

∞̂

0

S (ω,β )

4π2 (Θ(ω,T1)−Θ(ω,T2))βdβdω (3)

Where S (ω,β ) quantifies the contribution to the transfer at different ω and β values and is
given by:

S (ω,β ) =4ℑ(ζ )2
(

e−2βd− e−2β (t+d)
)(

1+ e−2β t |ζ |2
)

×
∣∣∣1−ζ

2
(

e−2βd + e−2β t − e−2βde−2β t
)∣∣∣−2

(4)

This can be viewed as a generalization of the earlier results obtained for the case of two
semi-infinite structures [29, 30]. Using the above expression for the S (ω,β ), it is easy to show
that the thermal transfer can be written as a function f of the ratio t/d:

S =
1
d2 f

( t
d

)
(5)
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Fig. 2. (a) Plot of normalized thermal conductance relative to its maximum value as a
function of slab thickness for four different vacuum gaps (b) Log-log plot of the maximum
thermal conductance achievable at each gap width as a function of the gap width.

This generalizes the previously reported results for the near-field thermal transfer between
semi-infinite slabs of SiC which is proportional to d−2 [29,30]. The asymptotic behavior of the
near-field thermal transfer for planar structures as a function of distance for different regimes of
thickness to distance ratio has been considered recently [16]. This expression, however, shows
that the only dependence on the thickness for the Swihart geometry comes from the t/d ratio.
Equation (5) shows that the thermal transfer obeys a universal scaling with t, for a given vacuum
gap. Moreover, it achieves its maximum value for a thickness which is proportional to the gap.
This comes from the fact that the modal hybridization and the associated near field transfer is
dependent on the thickness through the ratio between thickness and vacuum gap. Note should
be added here that these results hold for the case of near-field regime, where the contribution of
the s polarized waves becomes negligible.

In Fig. 2(a), we plot the normalized thermal transfer rate as a function of the ratio between
slab thickness and vacuum gap for four different sizes of vacuum gaps. For these calculations,
the permittivity of SiC is taken to be in the form of ε = ε∞ +ω2

0 (εs− ε∞)
(
ω2

0 −ω2 + iωδ
)−1,

with ε∞ = 6.7, εs = 10, δ/ω0 = 0.006 and ω0/(2π) = 2.38×1013sec−1(12.6µm) [31, 32]. In
addition, the temperature that is assumed in the numerical calculations is T = 315K.
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As we expect per Eq. (5), all the curves follow the same universal trend in this plot. The
maximum value is achieved for a slab thickness nearly equal to gap width. This leads to about
10% enhancement of the thermal transfer relative to the case of semi-infinite sized slabs. It is
interesting to note that the thermal transfer decreases with increasing d for d > t, despite the
fact that the slab volume (i.e. the amount of material) increases. Figure 2(b) shows the expected
d−2 scaling of the maximum achievable thermal transfer rate with gap size on a log-log scale.

Figure 3 shows the variation of S (ω,β ) as a function of ω , β for three different thicknesses
of t = 0.5d, t = d, and t = 2d. In each panel, the calculated dispersion relationships for the
relevant surface modes are shown with dashed white lines. These correspond to the real ω vs.
β dispersion profiles of the coupled surface modes (CSMs). It is clear that the main contribution
to the thermal transfer is coming from those CSMs. For the case of Swihart geometry, there is an
extra channel for thermal transfer at exactly ω = ωSPhP, contrary to the case of thermal transfer
between semi-infinite substrates [29]. In continuation, by using the coupled mode theory, we
show how the individual surface resonances at ω = ωSPhP, branch into three coupled surface
modes.

The spectral contributions to the near-field thermal transfer are maximized near the SPhP
resonance frequency. At this frequency, if we write the epsilon as ε =−1+ jε ′, the coefficient
ζ becomes ζ (ωSPhP) = −1− 2 j/ε ′. As it is the case for SiC, we assume that |ε ′| � 2. As a
consequence, S (ωSPhP,β ) can be written as:

S (ωSPhP,β )∼=
ε ′2e−2βd

(
1− e−2β t

)(
1+ 4

ε ′2
e−2β t

)
∣∣∣e−2βd + e−2β t − e−2βde−2β t + ε ′2

4

∣∣∣2 (6)

3. Coupled mode theory

Next, we develop a coupled mode theory [23] to understand the unique thermal transfer proper-
ties of the Swihart geometry. This structure supports three basic surface modes (see Fig. 1(a)).
The coupling between these three modes affords thermal transport between two bodies in the
near-field regime. First of all, using the above mentioned form for the permittivity, it is easy to
show that each of the isolated planar objects in the limit of large β resonates at frequency of
ωSPhP = ω0 (1+ εs)

1
2 (1+ ε∞)

− 1
2 and exhibits a decay rate of γ = δ/2. For the gap and slab-like

modes, the resonance frequencies are given by ωSPhP± k. Here, the parameter k quantifies the
coupling between two adjacent surface modes and can be calculated as k = ω0Γe−βd , where
Γ≡ (εs− ε∞)(1+ ε∞)

− 3
2 (1+ εs)

− 1
2 (Appendix B). Also, it is easy to show that δ can be written

in terms of the imaginary part of epsilon at ωSPhP as δ =−ω0Γε ′. Details of these calculations
are done in the appendix B.

For the Swihart geometry, we have three interfaces leading to three surface modes. From the
relevant dispersion relations [26], we find that in the limit of large β , their Eigen frequencies

are given by ω = ωSPhP and ω = ωSPhP±Γω0
(
e−2βd + e−2β t − e−2βde−2β t

) 1
2 . Each of them

has a corresponding decay rate of γ = δ/2. Three modes can be seen to be formed as a result of
coupling of three original isolated modes each of them supports a SPhP resonance at frequency
of ωSPhP and the decay rate of γ = δ/2. In the appendix C, it is shown that by taking the
amplitudes of the original modes to be a1, a2, and a3, the coupling between these modes can be
expressed as:

dA
dt

= (iωSPhP− γ)A+ iκA+
√

2γN (7)

Where A =
[

a1 a2 a3
]ᵀ is the matrix of amplitudes and N =

[
n1 n2 n3

]ᵀ is the
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Fig. 3. Surface plot of S (ω,β ) in ω −β plane for the case of (a) t = 0.5d (b) t = d, and
(c) t = 2d. These plots are overlaid by the ℜ(ω), β dispersion diagram of the surface
modes (dashed white lines). Insets show the calculations of S (ω,β ) using the coupled
mode theory, which are in close quantitative agreement with the exact calculations.
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matrix of noise fluctuations. Here, κ is the Hermitian coupling matrix and is given as:

κ = Γω0

 0 e−βd
(
1− e−2β t

) 1
2 0

0 e−β t

0

 (8)

Using the above coupling matrix, the Eigen modes of the system are consistent with the
previously calculated ones based on dispersion relations. As such, these relations extend the
coupled mode theory obtained for two semi-infinite SiC slabs [24] to the case of Swihart ge-
ometry. Whereas the required coupling coefficients and decay rates in the coupled mode theory
were previously obtained by parameter fitting, here they are derived from the mode analysis and
dispersion relations of the CSMs. Note that the thermal transfer between two bodies is carried
out by the coupling of the surface modes located at two sides of the vacuum gap (resonators 1
and 2). Moreover, there is a coupling between two sides of the thin slab of SiC (resonators 2 and
3). However, no direct coupling exists between resonators 1 and 3. Since the first resonator is
kept at temperature T1 and the second and third resonators are kept at temperature T2, then [23]:

〈
n∗1 (ω)n1

(
ω
′)〉=2πδ

(
ω−ω

′)
Θ(ω,T1)〈

n∗2 (ω)n2
(
ω
′)〉=〈n∗3 (ω)n3

(
ω
′)〉= 2πδ

(
ω−ω

′)
Θ(ω,T2)〈

n∗i (ω)n j
(
ω
′)〉=0 for i 6= j (9)

Following the coupled mode theory, the power transfer between two modes can be written
as 〈S (t)〉 = 2ℑ [κ12 〈a∗1 (t)a2 (t)〉]. By using the above-mentioned expressions and taking the
Fourier transform of the coupled differential equations, we can then calculate the thermal trans-
fer between two bodies. After summing over all transfer channels at different β s and ωs, we
obtain the total thermal transfer between the two bodies. Details of those calculations are de-
scribed in the appendix D. With the total thermal transfer expressed by Eq. (3), the final result
for the S (ω,β ) using couple mode theory can be expressed as:

S (ω,β ) =
ε ′2e−2βd

(
1− e−2β t

)∣∣∣∣e−2βd + e−2β t − e−2β (t+d)−
(

ω−ωSPhP
ω0Γ

+ iε ′
2

)2
∣∣∣∣2

×

(
1+

4ω2
0 Γ2e−2β t

ω2
0 Γ2ε ′2 +4(ω−ωSPhP)

2

)
(10)

At ωSPhP this gives exactly the same result as the one obtained by the exact method in the
limit of |ε ′| � 2. Figure 3 shows calculations of Eq. (10) as an inset for the three different
t/d values considered. The contribution to the thermal transfer coming from the β channels at
frequency of ω obtained with coupled mode theory closely resembles the exact analysis. Quan-
titatively, the coupled mode theory becomes increasingly accurate with increasing β . In fact,
the magnitudes of the spectral peaks in S (ω,β ) exhibit perfect quantitative correspondence,
even in the small β regime. We observe small shifts in the peak locations due to second order
effects that cannot be handled by the first-order coupled mode theory. However, these have a
negligible effect on the magnitude of the thermal transfer as its dominant contributions come
from the large β regime.

To highlight the difference between the two methods of thermal transfer calculation, we plot
the thermal transfer variation as a function of ω in Fig. 4. These graphs are for the structure
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Fig. 4. Comparison of variation of S (ω,β ) versus ω for a fixed value of β as calculated by
exact method (Exact) and coupled mode theory (CMT). Figures (a) to (c) are corresponding
to βd = 0.1, βd = 2, and βd = 5, respectively.
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with thickness t = d at three different values of β = 0.1/d, β = 2/d, and β = 5/d. Even for
small values of β , magnitudes of the peaks of S (ω,β ) calculated by the coupled mode theory,
are pretty close to the ones obtained by the exact analysis. Moreover, they essentially give the
same result for the thermal transfer contribution at the frequency of ω = ωSPhP.

4. Conclusion

In conclusion, we have calculated the thermal transfer in a Swihart’s geometry composed of a
SiC slab of infinite thickness and a thin SiC slab. We have shown that a maximum in the near-
field thermal transfer is achieved for a slab thickness that is nearly equal to gap width. Moreover,
we have applied coupled mode theory to accurately quantify the thermal conductance and to
obtain intuitive insights into modes that govern the thermal transport. The presented approach
of calculating near-field thermal transfer can also be generalized to other systems in which a
limited number of near-field optical modes dominate the transfer.

Appendix

In the following appendices, we start by presenting the exact analysis in more details. The
reflection and transmission coefficients used in order to calculate the exact thermal transfer are
expressed here. Also, a rigorous proof is presented explaining the thermal transfer variation
as a function of SiC slab thickness and vacuum gap. In order to explain the coupled mode
theory, we need to investigate the dispersion relations of different planar structures made of
SiC and vacuum. The next section is devoted for this investigation in basic planar geometries.
We start by the simple IM structure, composed of SiC neighbored by the vacuum. Next the
dispersion relation of the MIM structure, composed of a vacuum slab sandwiched by SiC layers,
is considered. In continuation, a SiC slab as an IMI structure is studied. By these analysis, we
are able to introduce the effect of coupling between their two supported IM modes. In the next
section, we investigate the dispersion relations of the Swihart geometry. We also obtain the
coupling matrix describing interactions between three IM modes supported in this geometry.
Finally, in the last section by using the obtained coupling matrix, we calculate the thermal
transfer rate based on the coupled mode theory.

Appendix A: Details of exact theory

Swihart geometry as described in the main manuscript is composed of a thick SiC substrate
separated by a vacuum gap from a thin SiC slab. The thermal transfer rate in this geometry can
be calculated by using the green functions and fluctuation dissipation theorem, as:

S =

∞̂

0

∞̂

0

ε0ωℑ(ε)

2π3 (Θ(ω,T1)−Θ(ω,T2))V12dβdω (11)

where V12 =V1−V2 with the following expressions for V1 and V2:

V1 =
−ωµ0kz

8ℑ(kz) |kz|2

{
(1−Rs)(1+R∗s )

+
β 2 + |kz|2

εk2
0

(1−Rp)
(
1+R∗p

)}
(12)
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V2 =
−ωµ0kzv

8ℑ(kz) |kz|2

{
|Ts|2 +

β 2 + |kz|2

εk2
0

∣∣Tp
∣∣2} (13)

As mentioned in the main manuscript, Rp,s and Tp,s are reflection and transmission coeffi-
cients corresponding to p and s polarized waves and Θ(ω,T ) = h̄ω/(exp(h̄ω/kBT )−1) is the
mean energy of a harmonic oscillator with angular frequency of ω at temperature T . Moreover,
β corresponds to the transverse component of the wave vector. In addition, kz =

√
εω2/c2−β 2

and kzv =
√

ω2/c2−β 2 are z components of the wave vector in SiC and vacuum, respectively.
If we further simplify this expression we arrive at the Eq. (1), expressed in the main manuscript.

For its derivation, we should first calculate the total thermal radiation from SiC substrate
to outside. We should then adjust it by subtracting from it the part that corresponds to the
thermal transfer rate from SiC substrate to the vacuum at far distances which is not absorbed
by the thin layer of SiC. These two contributions are represented by the factors V1 and V2,
respectively. There exists a rigorous theory expressing the thermal transfer in terms of general
Green functions. For obtaining the above expressions, relevant green functions are calculated
using the reflection and transmission coefficients. We consider the unity amplitude waves inside
the SiC substrate right at its interface with the vacuum gap. Reflection coefficients correspond to
the amplitude of these waves after reflection from the interface with the vacuum gap. Whereas,
transmission coefficients correspond to the amplitude of these waves after traversing the thin
SiC slab and the vacuum gap. These coefficients for the p polarized waves are expressed as:

Rp =
α2ξ

(
1− e−2 jkzvd + e−2 jkzvd−2 jkzt

)
−ξ 3e−2 jkzt

α3 +αξ 2 (e−2 jkzvd−2 jkzt − e−2 jkzt − e−2 jkzvd)

Tp =
4(α−ξ )e− jkzvde− jkzt

α3 +αξ 2 (e−2 jkzvd−2 jkzt − e−2 jkzt − e−2 jkzvd)
(14)

in which α , ξ are defined as α = 1+ εkzv/kz and ξ = 1− εkzv/kz. Moreover, the same rela-
tionship holds for the Rs and Ts for s polarized waves with the exception of modified definitions
for α = 1+ kzv/kz and ξ = 1− kzv/kz. These are in fact the modified Fresnel coefficients for
the Swihart geometry.

In the near-field regime, the contribution of the p polarized waves become dominant in the
thermal transfer. In this regime, as it was explained in the main manuscript, the thermal transfer
rate can be expressed as Eq. (3) with the S (ω,β ) expressed as Eq. (4). If we define the ratio,
r = t/d and b= βd, the special form of S (ω,β ) allows us to express it as S (ω,β ) = f1 (ω,r,b).
Using this form, the thermal transfer rate can be written as:

S = d−2

∞̂

0

∞̂

0

f1 (ω,r,b)
4π2 (Θ(ω,T1)−Θ(ω,T2))bdbdω

= d−2 f2 (r) (15)

in which f2 (r) is a function describing the variation of thermal transfer with the slab thick-
ness to vacuum gap ratio. This form of thermal transfer explicitly describes why the maximum
achievable thermal transfer at each vacuum gap varies with distance as d−2. Moreover, it de-
scribes why thermal transfer follows a universal curve as a function of thickness to vacuum gap
ratio at different vacuum gaps.
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Appendix B: Dispersion relations of basic planar structures

In this section, we consider the dispersion relation of three different structures supporting
SPhPs. We start with the IM structure that can be recognized as the building block for the
other ones. This is because of the fact that other more complex planar structures can be viewed
as structures supporting two or more of basic IM modes that interact with each other.

IM structure:

It is well known that SPhP dispersion relationship in an interface between a material with
permittivity of ε and vacuum is given by β =

√
ε/(1+ ε)ω/c. Using this relationship, and

incorporating the fact that permittivity is given by ε = ε∞ +ω2
0 (εs− ε∞)/

(
ω2

0 −ω2 + iωδ
)

,
we can find the resonance modes that it supports for a real valued transverse wave-vector β .

For very large β values, we obtain that resonance frequency is given by ωSPhP =

ω0 (1+ εs)
1
2 (1+ ε∞)

− 1
2 with the decay rate of γ = δ/2. Defining the factor Γ as Γ ≡

(εs− ε∞)(1+ ε∞)
− 3

2 (1+ εs)
− 1

2 , permittivity at this frequency can be written as −1+ jε ′, with
the ε ′ given by ε ′ =−δ/(ω0Γ).

MIM structure:

The MIM structure supports two kinds of modes known as symmetric and asymmetric modes
(in terms of the transverse component of the electric field). The dispersion relation for these
modes with real valued transverse component of the wave-vector β , is given by [26, 33]:

−

√√√√ β 2− ω2

c2

β 2− ε
ω2

c2

ε =


tanh

(
1
2

√
β 2− ω2

c2 d
)

sym

coth
(

1
2

√
β 2− ω2

c2 d
)

asym
(16)

Using the above equations, for large values of β , we find that:

ω =
iδ
2
+ω0

√
1+ εs

1+ ε∞

(
1± e−βd (εs− ε∞)

(1+ εs)(1+ ε∞)

)
(17)

where use have been made of the fact that for large values of x, tanh(x) ∼= 1− 2e−2x, and
coth(x) ∼= 1+ 2e−2x. The real part of ω corresponds to the resonance frequency ωr and the
imaginary part shows the decay rate γ . In this way, resonance frequencies ωr can be expressed
as ωSPhP± k, where k corresponds to the coupling between the two supported IM modes and
is given by k = ω0Γe−βd . These modes also have the decay rate of γ = δ/2. Note that the
+ sign corresponds to the symmetric mode while the − sign corresponds to the asymmetric
mode. Moreover, the parity of the magnetic field is the reverse of the parity corresponding to
the transverse component of the electric field.

IMI structure:

Similar to the MIM structure, the dispersion relations for symmetric and asymmetric modes
supported in this structure are given by:

−

√√√√ β 2− ω2

c2

β 2− ε
ω2

c2

ε =


tanh

(
1
2

√
β 2− ε

ω2

c2 d
)

asym

coth
(

1
2

√
β 2− ε

ω2

c2 d
)

sym
(18)
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Using the same kind of approximation, we arrive at similar results as the ones for MIM
structure in the limit of large β . The resonance frequencies are given again by ωSPhP±k with the
same value of k defined before. However, in this case the + sign corresponds to the asymmetric
mode while the − sign corresponds to the symmetric mode.

Appendix C: Mode coupling in the Swihart geometry

For the Swihart geometry, we have 3 interfaces leading to three surface modes. The dispersion
relation for this structure is given by α3+αξ 2

(
e−2 jkzvd−2 jkzt − e−2 jkzt − e−2 jkzvd

)
= 0, with the

definition of α , ξ as α = 1+ εkzv/kz and ξ = 1− εkzv/kz. This equation has three solutions

corresponding to α = 0 as well as
(
e−2β t + e−2βd− e−2βde−2β t

) 1
2 =±α/ξ .

In the limit of large values of β , these become ε =−1 and
(
e−2β t + e−2βd− e−2βde−2β t

) 1
2 =

±(1+ ε)/(1− ε). Solving for the resonance frequencies, we arrive at three solutions given by

ω = ωSPhP and ω = ωSPhP±Γω0
(
e−2βd + e−2β t − e−2βde−2β t

) 1
2 . All these resonance modes

have the decay rate of γ = δ/2. It is clear that this structure supports three IM modes that are
coupled to each other. In fact, if we show the amplitudes of these original modes by a1, a2, and
a3, the coupling between these modes can be expressed as Eq. (7). Neglecting for the moment
the effect of noise and also setting the decay rates to zero by assuming δ = 0, we obtain that:

dA
dt

= iωSPhPA+ iκA (19)

By applying Fourier transform, we find the eigen value equation that ωs should satisfy:

|κ +(ωSPhP−ω) I|= 0 (20)

where in that A =
[

a1 a2 a3
]ᵀ is the matrix of amplitudes. Also κ is the hermitian

coupling matrix. The eigen values of the above equation should yield the correct eigen modes
of the system as expressed earlier. However, this information by its own cannot be used to
determine the coupling matrix. In order to determine the coupling matrix elements, we need
to consider a more general structure, in which the substrate material and the thin slab material
are different. In this way, the threefold degeneracy existing in the original modes are removed.
Assuming the permittivity of the thin slab as ε f and the substrate as εsub, the original mode
frequencies without coupling effects are ω1, ω2, and ω2, where ω1 and ω2 correspond to the IM
modes at vacuum-substrate interface and vacuum-film interface, respectively. The dispersion
relation for this more general structure in the limit of large β is given by:

ζ
−1
subζ

−2
f −ζ

−1
sube−2β t −ζ

−1
f e−2βd

(
1− e−2β t

)
=0 (21)

where in that ζ f =
(
1− ε f

)
/
(
1+ ε f

)
, ζsub = (1− εsub)/(1+ εsub). If we expand ζ

−1
sub and

ζ
−1
f around ω1 and ω2, we have ζ

−1
sub =(ω−ω1)/

(
Γsubω0,sub

)
and ζ

−1
f =(ω−ω2)/

(
Γ f ω0, f

)
,

respectively. Using these expansions, the dispersion relation becomes:

(ω−ω1)(ω−ω2)
2−Γ

2
f ω

2
0, f e−2β t (ω−ω1)

+Γ f Γsubω0, f ω0,sube−2βde−2β t (ω−ω2)

−Γ f Γsubω0, f ω0,sube−2βd (ω−ω2) = 0 (22)

The corresponding eigenvalue problem in this general structure is:
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∣∣∣∣∣∣
ω1−ω κ12 κ13

κ∗12 ω2−ω κ23
κ∗13 κ∗23 ω2−ω

∣∣∣∣∣∣=0 (23)

This will lead to the following equation:

(ω−ω1)(ω−ω2)
2−|κ23|2 (ω−ω1)

−|κ12|2 (ω−ω2)−κ12κ
∗
13κ23

−|κ13|2 (ω−ω2)−κ
∗
12κ13κ

∗
23 = 0 (24)

From Eqs. (22) and (24), we can find the coupling matrix elements in their general form.
However, in the case of assuming the same material for the film and substrate, we find that:

κ12 = κ21 = Γω0e−βd
(

1− e−2β t
) 1

2

κ23 = κ32 = Γω0e−β t

κ13 = κ31 = 0 (25)

This completes the derivation of the coupling matrix for the Swihart geometry.

Appendix D: Details of coupled mode theory

As it was mentioned in the main manuscript, by adding the noise fluctuations to the coupled dif-
ferential equation, we arrive at Eq. (7). By taking Fourier transform, amplitudes of the coupled
modes can be expressed in terms of noise fluctuations:

 A1 (ω,β )
A2 (ω,β )
A3 (ω,β )

=K−1

 √2γn1√
2γn2√
2γn3

 (26)

in which K is given as:

K =

 i(ω−ωSPhP)+ γ iΓω0e−βd
(
1− e−2β t

) 1
2 0

iΓω0e−βd
(
1− e−2β t

) 1
2 i(ω−ωSPhP)+ γ iΓω0e−β t

0 iΓω0e−β t i(ω−ωSPhP)+ γ

 (27)

From the coupling matrix, it is clear that the thermal transfer between two bodies is carried
out between modes 1 and 2, since κ13 = 0. Moreover, from the coupled mode theory [23, 24],
we know that if 〈A∗1 (ω,β )A2 (ω

′,β )〉 = t (ω,β )δ (ω−ω ′), then S (ω,β ) defined by Eq. (3),
can be written as S (ω,β ) = π−1ℑ(κ12t (ω,β )).

After computing the inverse matrix, and using Eq. (9), we find that:
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t (ω,β ) =4πγe−βd
(

1− e−2β t
) 1

2 |γ + i(ω−ωSPhP)|−2×∣∣∣(γ + i(ω−ωSPhP))
2 +ω

2
0 Γ

2
(

e−2βd + e−2β t − e−2β (t+d)
)∣∣∣−2

×[
iω0Γ

(
(γ− i(ω−ωSPhP))

2 +ω
2
0 Γ

2e−2β t
)
(γ + i(ω−ωSPhP))Θ(ω,T1)−

iω0Γ(γ− i(ω−ωSPhP))(γ + i(ω−ωSPhP))
2

Θ(ω,T2)−

iω3
0 Γ

3e−2β t (γ + i(ω−ωSPhP))Θ(ω,T2)

]
(28)

By using this expression for the t (ω,β ), S (ω,β ) is calculated to be as Eq. (10). This com-
pletes the calculation of thermal transfer based on coupled mode theory.
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