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Polychromatic vectorial vortex formed by
geometric phase elements
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We propose the use of a geometric phase, obtained by spatial polarization state manipulations, for the for-
mation of polychromatic vectorial vortices. Experimental demonstration is obtained by using
Pancharatnam–Berry phase optical elements formed by a space-variant subwavelength grating etched on a
GaAs wafer. We further demonstrate formation of scalar and unpolarized polychromatic vortices. © 2007
Optical Society of America
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In the past few years, researchers have directed in-
creased attention to phase singularities in polychro-
matic beams,1 and to polychromatic vortices, in
particular.2 It is expected that polychromatic vortices
will enable formation of femtosecond laser pulses
with angular momentum3 and advanced applications
such as stellar coronagraphy.4,5 Consequently, sev-
eral methods for embedding vortices in polychro-
matic fields have been devised. Such methods include
using a uniaxial crystal,6 a dispersion compensated
hologram,3,7,8 and spiral phase elements composed of
two materials with opposite dispersion.9

In addition to the scalar singular optics, research
in vectorial singular optics, including vectorial vorti-
ces, has been conducted.10–13 However, none of these
studies considered embedding vectorial vortices in a
polychromatic beam. A vectorial vortex occurs around
a point where a scalar vortex is centered in at least
one of the scalar components of the vectorial wave
fields. It is expected that polychromatic vectorial vor-
tices will be useful in applications such as hollow fi-
ber polychromatic power delivery13 and surface wave
excitation by radially polarized pulses or polychro-
matic beams.14

In this Letter we experimentally demonstrate the
formation of linearly polarized vectorial vortices em-
bedded in a polychromatic beam based on a geomet-
ric phase that accompanies space-variant polariza-
tion state manipulation. We form our vectorial
vortices by using space-variant subwavelength grat-
ings. These elements, which apply geometric phase
modulation, are termed Pancharatnam–Berry phase
optical elements15,16 (PBOEs). In addition, we experi-
mentally demonstrate formation of unpolarized vorti-
ces. These beams are the incoherent sum of two poly-
chromatic scalar vortices at orthogonal circular
polarizations. The formation of a polychromatic sca-
lar vortex is also discussed.

A subwavelength grating behaves as a uniaxial
crystal with the optical axis parallel and perpendicu-
lar to the grating stripes.15 PBOEs are obtained by
spatially rotating the orientation of the subwave-
length grating’s grooves along the face of an element.
In this manner, PBOEs operate as space-variant re-

tarders or polarizers. The Jones matrix of a PBOE
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can be found by applying the two-dimensional rota-
tion matrix to a Jones matrix of a uniform retarder,
resulting in15

T�x,y;�� = �0���I + �1�����R��L�exp�i2��x,y��

+ �L��R�exp�− i2��x,y��	, �1�

where I is the 2�2 identity matrix, ��x ,y� is the local
subwavelength groove orientation, x and y form the
rectangular axes, � is the wavelength, and �R�, �L�
are the right- and left-handed circularly polarized
unit vectors in the Dirac bracket notation. Also,
�0���= �tx���+ ty���exp�i�����	 /2 and �1���= �tx���
− ty���exp�i�����	 /2, where ���� is the subwavelength
grating’s retardation and tx���, ty��� are the ampli-
tude transmissions parallel and perpendicular to the
subwavelength grooves. For dielectric subwavelength
gratings, the transmission is relatively high; thus tx

 ty
1 and the retardation is given by ����=�0�0 /�,
where �0=���0� for the central wavelength �0.

According to Eq. (1), the beam that emerges from a
PBOE with �0=� and �=m� /2 (� is the azimuth in
polar coordinates, m is an integer), and that is illu-
minated by a polychromatic beam, �Ein�=�S��� �L�
[S��� is the spectrum], is

�Eout���� = T�Ein� = �S�����0����L� + �1���exp�im���R��.
�2�

Equation (2) represents a vectorial vortex beam com-
posed of two coherent polarization components. The
first maintains the polarization of the incident beam
and bears no phase modification; the second is or-
thogonally polarized and has the phase of a scalar
vortex. The magnitudes of the two polarization com-
ponents are governed by �0��� and �1���. At the de-
sign wavelength, �0=0. Thus a pure scalar vortex is
formed. However, for other spectral components this
is not the case, and Eq. (2) cannot be considered a
polychromatic scalar vortex. However, if the left-
handed circular polarized component is removed

from the beam, we obtain
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�E� = �S����1���exp�im���R�. �3�

Consequently, a polychromatic scalar vortex with a
topological charge m is achieved. Removal of the un-
desired component can be obtained either by using a
suitable achromatic circular polarizer or by spatial
filtering. The spatial filtering is simple, as the undes-
ired component has a zero spatial frequency and thus
can be easily filtered by a 4-f system. The dispersion
manifests itself through �1���, which modifies the
spectrum of the emerging beam while leaving the
phase intact. It is important to note that careful de-
sign of the subwavelength groove profile can yield a
birefringence that is proportional to the wavelength,
at least within a limited spectral band.17,18 Thus an
achromatic subwavelength grating retarder is
formed, which can serve to retain the power spec-
trum.

An important feature of Eq. (3) is the added phase
factor, m�. This phase originates solely from the local
changes in the polarization state of the emerging
beam. It is easy to show this dependence by using the
Poincaré sphere presentation (see Fig. 1). In the de-
scribed example, mapping of the polarization state of
the emerging beam at two distinct points on the ele-
ment shows them to travel along different geodesic
lines. Polarization state changes at these two loca-
tions are represented by the geodesic lines connect-
ing the north and the south poles of the sphere. Half
of the area enclosed by these geodesic lines, i.e., � /2,
is 2�=m�, which is exactly the phase modification as
described in Eq. (3). As can be seen, the phase modi-
fication depends only on the space-variant retarder
orientation and is therefore independent of the wave-
length.

From Eq. (1), illuminating the PBOE discussed
above with a linearly polarized polychromatic beam,
�Ein=�S��� �H� [where �H�= ��R�+ �L�� /2], results in

Fig. 1. Polarization state transformation is represented as
trajectories on the Poincare sphere. Rotation of the grating
by � results in a 2� phase modification. This phase equals
half of the area enclosed by the geodesic lines. Inset, scan-
ning electron microscope image of the PBOE surface for

m=1.
�Eout���� = T�Ein� = �0����H� + �1�����m�, �4�

where ��m�= �R�exp�im��+ �L�exp�−im�� denotes a
linearly polarized vectorial vortex with a polarization
order number m.10 The emerging beam is composed
of a horizontally polarized component of magnitude
�0��� and a linearly polarized vectorial vortex of mag-
nitude �1���. At the design wavelength, �0=0, a pure
linearly polarized axially symmetric vectorial vortex
is formed. However, for other spectral components,
this beam is not a vectorial vortex. Nevertheless, the
undesired �H� component can be spatially filtered so
as to form a linearly polarized vectorial vortex. As de-
scribed in the former case, the spatial filtering is
simple, as it again involves zero spatial frequency of
the undesired component.

To experimentally demonstrate our approach, we
used PBOEs, originally designed to introduce a heli-
cal phase for circular illumination at a nominal
wavelength of 10.6 	m. A scanning electron micro-
scope image of this PBOE is shown in the inset of Fig.
1. The elements are 10 mm in diameter and com-
posed of a 2 	m subwavelength period etched 5 	m
onto a GaAs wafer with a fill factor of 0.5. A more
thorough description of the design and fabrication of
the PBOEs can be found in Ref. 16. The PBOE was
illuminated with a beam from a collimated SiC ther-
mal source transmitted through an achromatic wire
grid polarizer. Images were captured by using a bolo-
metric camera (FLIR Thermovision A40). Figure 2(a)
shows the far-field intensity distribution of the lin-
early polarized vectorial vortex for the various polar-
ization order numbers. Note that the intensity im-
ages are integrated over the responsivity band of the
camera, which is between 8 and 14 	m in wave-
length. We calculated �0��� and �1��� for our mea-
sured groove profile by using rigorous coupled wave
analysis. The average value of ��0����2 / ��1����2 was
found to be less than 5% within this spectral band.
Thus the central intensity lobe is small and vanishes
within the background radiation. Figure 2(b) shows

Fig. 2. (a) Measured intensity distributions for linearly
polarized vectorial vortices embedded in polychromatic
beams. (b) Same as (a) but imaged through a linear ana-
lyzer. (c) Schematic representation of the polarization state
of the linearly polarized vectorial vortices.
the imaged intensity distribution transmitted
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through a polarizer analyzer. The propellerlike inten-
sity shape confirms the existence of a polychromatic
linearly polarized vectorial vortex, shown schemati-
cally in Fig. 2(c).

Another interesting case is the unpolarized illumi-
nation of our PBOE. Figures 3(a) and 3(b) show the
measured far-field intensities when the two polariz-
ers are removed. The emerging beam is the incoher-
ent sum of two polychromatic scalar vortices at or-
thogonal circular polarizations. Unpolarized vortices
are sufficient for applications that require neither po-
larized light nor the transfer of an angular momen-
tum. For comparison, we included Fig. 3(c), which
shows the experimental far-field intensity distribu-
tion from a ZnSe refractive helical phase device with
a topological charge of unity that is designed for a
nominal 10.6 	m wavelength. The apparent dark
fringe that splits the intensity doughnut results from
phase discontinuity, as predicted by Berry.19

To conclude, we propose the use of a geometric
phase induced by space-variant polarization state
manipulation to form polychromatic vectorial, unpo-
larized, and scalar vortices. Polychromatic linearly
polarized vectorial vortices and polychromatic unpo-
larized vortices were experimentally demonstrated,

Fig. 3. (Color online) Measured intensity distributions for
unpolarized vortices with m=2,4 in (a) and (b), respec-
tively. (c) Measured diffraction pattern obtained from a re-

fractive spiral phase plate for m=1.
using PBOEs realized by space-variant subwave-
length gratings.
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