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Analytic optimization for holographic optical elements
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A method is presented for designing optimal holographic optical elements. The method is based on an analytic ray-
tracing procedure that uses the minimization of the mean-squared difference of the propagation vector components,
between the actual output wave fronts and the desired output wave fronts. The minimization yields integral
equations for the grating vector components that can be solved analytically, in some cases without any approxima-
tion. This leads to a well-behaved grating function that defines a holographic optical element.

INTRODUCTION

In an optical system that is designed to operate with mono-
chromatic or quasi-monochromatic illumination sources, it
is possible to replace the conventional refractive elements
with holographic optical elements (HOE's) that are based on
diffractive optics.1 In general, the HOE's transform a given
set of waves into another set of waves, and their performance
is ideal when the readout geometry and wavelength are iden-
tical to the recording geometry and wavelength. However,
in general, the geometries and wavelengths differ so that
severe aberrations occur.

In order to minimize the aberrations, it is necessary to use
optimization procedures for designing and recording a holo-
graphic element having a complicated grating function.
Several procedures have been proposed. These are based on
numerical iterative ray-tracing techniques2 or on minimiz-
ing the mean-squared difference of the phases of the actual
output wave fronts and the desired output wave fronts.3 -5

In the iterative ray tracing, extensive calculations of ray
directions are required, and the solutions often converge to
local minima rather than to the desired absolute minimum.
In the phase minimization, the phase must be defined up to
an additive constant so that the optimization procedure
becomes rather complicated and it is necessary to resort to
approximate solutions. As a result, such optimization pro-
cedures do not yield an exact solution except in specific
cases.6

In this paper we present a different optimization proce-
dure in which the design is based on analytical ray tracing
that minimizes the mean-squared difference of the propaga-
tion vector components between the actual output wave
fronts and the desired output wave fronts. The mean-
squared difference of the vector components is defined in
such a way that the functions involved are continuous. Spe-
cifically, we define continuous input parameters that char-
acterize the propagation vector components of each wave
front. We then obtain integral equations for the optimal
grating vector components that can be solved analytically, in
some cases without any approximation.

To illustrate our method we have designed Fourier-trans-
form and imaging lenses. The performance of the lenses is
analyzed by ray tracing and then is evaluated with a merit

function that characterizes the quality of the lenses. The
results are then compared with those of quadratic HOE's
and with conventional HOE's recorded with spherical wave
fronts, to illustrate the superiority of the newly designed
lenses.

BASIC RELATIONS FOR OPTIMIZATION

A HOE can be described as a diffractive grating that trans-
forms the phase of an incoming wave front to another output
phase. The phase of the output wave front, e0 , is given by

0o = 0i + nfh, (1)

where As is the phase of the input wave front, Oh is the grating
function of the HOE, and n represents various diffractive
orders from the holographic grating. In general, only the
first diffracted order is of interest, so that n = 1. To pro-
ceed, we now use the normalized propagation vectors and the
grating vector of the holographic element, rather than the
phases. The normalized propagation vectors, which can be
regarded as the direction cosines of the input and output
rays, can be written as

Xread -
2wr (2)k ead = v ,,K= 2 V-

and the grating vector can be written as

Rh Xree Vh = Hic c + Ae9
27w A, A

(3)

where Xread is the readout wavelength, Xrec is the recording
wavelength, V is the gradient operator, and Ax and A, are the
grating spacings in the x and y directions.7 The diffraction
relations can now be written as

Xx,, ~= Rx; - hKxh

-qy,, = kY, - KY,,

R,,, = +(I - Xx ,2 _ q2 2)1/2,

(4)

(5)

(6)

where g = Xread/Xrec. Note that kX"2 + RZy2 should be <1 so
that evanescent wave fronts are not obtained.

The goal when one is designing HOE's is to transfer input

0740-3232/89/010062-11$02.00 ( 1989 Optical Society of America

E. Hasman and A. A. Friesem



Vol. 6, No. 1/January 1989/J. Opt. Soc. Am. A 63

rays into corresponding output rays that will be optimized
for a given range of input parameters. The input parameter
could, for example, be the direction cosine of the incoming
waves or the location of the input point sources. For a single
specific input parameter it is relative easy to form a HOE
that will yield the exact output rays. However, for a range of

Kx,(x) = - f

f J W,,(u) W(a)P(x 0 , a, A) [lZxd(xa, a, A)

- I;(x,, a, A) + AKXh(xO)],ududa = 0.

Thus the optimal grating vector component is

Wf,(A)W(a)P(x, a, )A[RRxd(x, a, A) - fIC,(x, a, A)]dadM}

(11)

[J J W,(A)W(a)P(x, a, A)'2dadA]

input parameters it is necessary to optimize the grating
vector so as to minimize the difference between the actual
output rays and the desired rays. The optimization is
achieved by minimizing the mean-squared difference be-
tween these two sets of rays. In general, the optimization
procedure can include the effects of the pupil function of the
HOE, different optimization weighting for each input pa-
rameter, and readout with broad spectral illumination.

To simplify the presentation of our optimization method,
we first describe the method in one-dimensional notation
and then extend it to two dimensions.

One-Dimensional Optimization
The mean-squared difference of the propagation vectors is
defined as

E2 = J J J W,,(,)W(a)P(x, a, g) [fKxd(x, a, ,u)

- kx(x, a, 1u)] 2 dyudadx, (7)

where the direction cosines of the output and desired rays,
1?x,(x, a, ,) and Rxd(x, a, 4), depend on ,t and the input
parameter a and where x is the space coordinate on the
HOE. The pupil function denoted by P(x, a, ,) is generally
a binary function, the optimization weighting function for
each input parameter is given by W(a), where 0 < W(a) < 1,
and W1,(M) denotes the weighting function for the readout
wavelengths, where 0 • W,(,) < 1. Inserting Eq. (4) into
Eq. (7) yields

E2 = f f f W,,(t)W(a)P(x, a, M)[Rx,(x, a, bt)

-1Zx(x, a, ,u) + ,Kxh(x)] 2dlidadx. (8)

The optimal grating vector component Kxh(x) can be deter-
mined by minimizing E2 . It is sufficient, however, to mini-
mize a simpler integral that we denote by e2(x,):

e2(xo) = J f W,,() W(a)P(xo, a, Ai) [fZxd(xO, a, ju)

- K~(x0 , a, 1) + PKXh(xO)]2 dda, (9)

where x, represents an arbitrary coordinate x. Differentiat-
ing e2(x,) with respect to Kxh(xo) and setting the result to
zero yields

Since the second derivative of e2 is greater than zero, the
optimal grating vector yields minimum e2. The correspond-
ing optimal grating function can be found by using Eq. (3):

kh(X) = 2 J Kxh(x)dx. (12)

Usually the readout illumination is monochromatic, so
that W,(,) = 6( - A.), where 6(,u) is the delta function and
11o = Xread/Xrec = constant. Thus Eq. (11) simplifies to

-! W(a)P(x, a)[f<xd(x, a) - 1xZ(x, a)]da

Kxh(x) =

/-tofW(a)P(x, a)da
(13)

The function Kxh(x) depends on the W(a), P(x, a), fKxd(x, a),
and Kxi(x, a), all of which are given for a specific element
design.

Two-Dimensional Extension
The mean-squared difference of the propagation vector
components, as given in Eq. (7), can be extended to two
dimensions. For monochromatic readout, it includes two
scalar equations, one for EX2 and the other for EY2, and is
written as

E = J f J W(a)W(b)P(x, y, a, b) [KZd(x, y, a, b)

- K 1 (x, y, a, b)]2 dadbdxdy, (14)

where I denotes the transverse vector components x and 9
and where a and b are the input parameters for the x and y
coordinates, respectively. Equation (14) can be expanded,
by using Eqs. (4) and (5), to

E = J J J W(a)W(b)P(x, y, a, b)[1ZKd(x, y, a, b)

- k1(x, y, a, b) + yoKh(x, y)]2dadbdxdy. (15)

As was done for the one-dimensional optimization, the opti-
mal two-dimensional grating vector, Kh(x, y), is obtained by
minimizing E 1

2 to yield

-f - W(a)W(b)P(x, y, a, b)[R,,(x, y, a, b) - K1 .(x, y, a, b)]dadb

Klh(X, y) = uo f f W(a) W(b)P(x, y, a, b)dadb

(10)

(16)

E. Hasman and A. A. Friesem



64 J. Opt. Soc. Am. A/Vol. 6, No. 1/January 1989

Then, the two-dimensional grating function, 1bh(X, y), is
found by integrating along some arbitrary path to yield

Oh(X, Y) >- h(O, 0) = 2 Th Ž dr
Xrec c

= 2 Ir J Kx (x, y)dx + Kyh(x, y)dy,

(17)

where Oh(O, 0) can be defined to be zero.
For a unique solution, the condition of V I X Kh = 0 must

be fulfilled, where the gradient V 1 denotes (a/Ox)x + (d/
ay)5. This condition can be written explicitly as

OKXh(X, y) aKY(X, y)
ay = YX (18)

For an on-axis holographic element having circular symme-
try, this condition is fulfilled; however, in general, for off-
axis elements this condition cannot be fulfilled, so that an
exact solution for the grating function sij(x, y) cannot be
found. Nevertheless, it is possible to obtain approximate
solutions. For example, when the off-axis angle is relatively
low, it is possible to approximate the grating function by
simply adding a linear phase term to the one-dimensional
on-axis design, 4' 6

2wr
'kh(X, y) = [4h(r)h on-axis + - (sin 0r)x. (19)

Xrec

In Eq. (19) Or is the off-axis angle and

[0h(r)]on.axis = f J Krh(r)dr, (20)

where Krh,(r) is essentially the same as given by Eq. (13) after
replacement of x with r, where r = (x2 + y 2

)1/2. Alternative-
ly, since in many cases Kxh(x, y) has weak dependence on the
y coordinate and Kyh(x, y) has weak dependence on the x
coordinate over the whole holographic element's area, these
two-dimensional grating vector components can be approxi-
mated by one-dimensional components Kxh(x, y = 0) and
Ky,(x = 0, y). Consequently, the two-dimensional grating
function, qh(X, y), can be approximated by two separate one-
dimensional functions, as

rkh(Xo, Yo) = [h(Xo)]off-axis + ['0h(Yo)]on-axis

= 2jr KxK(xy = 0)dx

+J 0KYh(x = 0, y)dy (21)

where the one-dimensional grating vector components are
found according to Eq. (13). The approximation of Eq. (21)
is more general than that of Eq. (19), since it is also valid for
higher off-axis angles.

Analysis of Aberrations
In order to determine the aberrations for a holographic ele-
ment, it is necessary to determine the difference between the
phase of the output wave front and the phase of the desired
wave front, given in one dimension as

q(X) = Od(X) - OX)- (22)

In our notation the relevant angular transverse aberrations,
T(x, a), are thus given by8

T(x, a) = 2ead - I (x a) - IxO(x, a)2wr ax -Xd

- D + Ax + Cx2 + Sx3 + (23)

where D denotes the distortion, A denotes the coefficient of
the field curvature and astigmatism, C denotes the coeffi-
cient of the coma, and S denotes the coefficient of the spheri-
cal aberrations.

In general, the optimization procedures reduce all aberra-
tions simultaneously. It is, however, possible to obtain
some trade-off among the various aberrations.5 For exam-
ple, in some applications it may be more important to reduce
the coma and astigmatism at the expense of the distortion.
Such a trade-off can be incorporated into our optimization
method by choosing a different desired propagation vector
component RXd'. Specifically,

m I

Xd Xd + c E ijacxj
i=1 j=O

m m

= 1ZXd + > cioai + I cilaix + ....
i=1 i=1

(24)

If, for example, we optimize the design for all aberrations but
allow the distortion to be arbitrary, then 1 is zero; thus only
the ci0 coefficients must be optimized. The optimal ci0 coef-
ficients can be found by minimizing the mean-squared dif-
ference of the propagation vector components given in Eq.
(8); i.e., differentiating with respect to ci0 and setting the
result to zero,

dE2
= 0.

dci0
(25)

Alternatively, we could allow additional or other aberrations
to be arbitrary, so that different coefficients must be opti-
mized.

FOURIER-TRANSFORM LENS

The operation of a holographic Fourier-transform lens
(FTL) is described with the aid of the one-dimensional
representation in Fig. 1. The input object is a transparency
that is illuminated with a coherent beam; each spatial-fre-
quency component can be represented by a plane wave
emerging from the transparency at a certain angle, Oi. The
FTL focuses each of these plane waves to a point at the
output plane corresponding to the angular direction of the
waves.9 The width of the input transparency aperture is
2W, and it extends from coordinate W2 to WI, whereas the
holographic lens aperture extends from coordinate D1 to D2 -
Finally, do and di are the distances from the holographic
element to the object and output plane, respectively.

It is convenient for FTL design to let the input parameter
a be a direction cosine of the plane waves emerging from the
transparency, so

a = a = sinOi. (26)
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Fig. 1. Readout geometry for an off-axis FTL.

Consequently the normalized propagation vector of the in-
put rays is

Rx.(x, a) = k ja) = a. (27)

Now, an input plane wave having a direction cosine a must
be transformed at a distance di into a spherical wave con-
verging to a point (a - ar)f, where ar = sin 0r, 

0
r is the off-axis

angle, and f is a proportionality constant. The direction
cosines of the desired output rays then become

, a) - Ix ~~- (af - arf)]_ 28
Kd(x, a=Rd(X, a) = ]2 1/21 x- (af - arf)] + di')/ (8

It is often appropriate to modify Zxd by permitting arbitrary
distortion that varies with the input parameters. Thus us-
ing Eq. (24) yields

m

KXd '= X Xd + cioat.
i=l

(29)

where the pupil function, P(x, a) in Eq. (13), is expressed by
the upper [a2(x)] and lower [al(x)] direction cosines of the
input plane waves that intercept the holographic lens at a
point x. The detailed expressions for a 1(x) and a 2(x) are
given in Appendix A.

The solution for Eq. (31) is

(1 - cl 0)[a1 (x + a 2 (X)] 
Kxh(x, clo) = 2 [(X)] - 1

X ({[x + arf - a2 (x)fl 2 + di2il/ 2

- {[x + arf - al(x)f]2 + d 21l/2). (32)

The coefficient clo is found from the simplified relation of
Eq. (8),

2LD2 pa2 (x)

D, al(x)
[lZxd + C10 a - kXi + KXh(X, C10 )]2 ddadx, (33)

and, with Eq. (25), yields

-itD2 f a(x) F a = )] a(x) + a2 x dadx
D jj [kd(x) K , 0)] La- 2

tD2 Ca2(x) F al(x) + a2(x) 12
, al(x) a- 2 dadx

- (34)

For simplicity, we retain only the first coefficient clo, so Eq.
(29) simplifies to

d -[x - (af -arf)]
J[x- (af - af)]2 + di2(

Substituting fxi from Eq. (27) and the modified 1?xd from
relation (30) into Eq. (13), and for W(a) = 1 and ,uo = 1, we

obtain

Kxh(x, clo) = - 1
[a2(X) - al(x)]

Xf2(X)/ -[x - (af -a )] 3
X -(a-+ c10 a12°+d 21)

Jai(x)\lx - (af -arf)]P + -i2 a, a (31

The solution given by Eq. (32) is rather general and can be
simplified to obtain approximate optimal designs. For ex-
ample, it is possible to expand Eq. (32) by assuming the
paraxial approximation for large fix and a small off-axis
angle and setting do = di = f and clo = 0 to obtain the
approximate solution of the quadratic off-axis FTL, 6 given
by

[KX,(x)].simpified f + a,= [K.,(x)] q (35)

As an illustration, we evaluated the performance of the on-
axis and off-axis one-dimensional optimal FTL's given by
Eqs. (32) and (34), by using a ray-tracing analysis 7 that is
based on Eqs. (4) and (6). The specified parameters for the
on-axis FTL were 0r = 0°, f = di = 60 mm, do = 60 mm, D 2 =

T
2W
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-DI = 30 mm, W = 10 mm, and cl0 = 0.008, whereas for the
off-axis FTL they were 0, = 450, f = di = 60 mm, do = f Cos 0,
= 42.5 mm, D2 = -DI = 30 mm, W = 10 mm, and cl0 =
0.0122. For comparison, we also performed a ray-tracing
analysis for a quadratic FTL [Eq. (35)] as well as for a
spherical FTL for which

[K(x), (X2 + a .L~iph - x2+f)/ 

900

Boo

700 I

600 I

(36) .5'

N
co

The specified parameters for these were the same as those
described above.

The detailed results for the spot sizes as a function of the
input angles for the optimal, the quadratic, and the spherical
FTL's are shown in Figs. 2 and 3; these results do not take
into account the diffraction from the aperture. The spot
sizes were determined by calculating the standard deviation
of the location of the rays at the output plane as a function of
the angular directions for each input plane wave. Figure 2
shows the results for the on-axis format; the results shown in
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(b)
Fig. 2. Spot size as a function of the input angle for an on-axis FTL:
(a) spherical, quadratic, and optimal grating functions; (b) magni-
fied region of optimal and quadratic grating functions.
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Fig. 3. Spot size as a function of the input angle for an off-axis
FTL: spherical, quadratic, and optimal grating functions.

Fig. 2(b) are merely a magnification of the results in the
lower portion of Fig. 2(a). As shown, the spot sizes for the
optimal FTL are somewhat bettter than those for the qua-
dratic lens over the entire range of input angles. They are
significantly better than those for the spherical lens. Figure
3 shows the results for the off-axis format. The spot sizes
for the optimal FTL are uniform over the entire range of
input angles, and they are obviously better than for the other
two lenses, especially at larger input angles. In the off-axis
format, the performance of the quadratic lens approaches
the poor performance of the spherical lens as the off-axis
angle increases.

Analysis of Aberrations
In order to identify and evaluate the various aberrations for
the FTL's, we begin with Eq. (4) and relation (23) to obtain
the angular transverse aberration as

T = Xd kxi + IAKxh. (37)

Considering only third-order aberrations, 8 the normalized
propagation vectors fxd and Kxi for the on-axis FTL with di
= do = f become

Kx = -(x - af)
[(X - afl2 + P21/2

'I a-2 °ff (2 °-1) .2 ° (a-)a2 a( ) (38)

and fxi is given by Eq. (27). The grating vector for the
optimal FTL is the same as for the quadratic FTL,

(Kxh)Opt- x

and the grating vector for the spherical FTL is

(Kxph = (X 2 + f2)1/2

X 1 tX\3

f 2 ~fJ

(39)

(40)
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Now, for the FTL format as shown in Fig. 1, we need not
find the aberrations for the entire hologram but can resort to
subareas that are referred to as local holograms. The center
for each such local hologram, xj(Oj), is

x,(6i) = / tan Oi = (1 -a (41)

Consequently at each local hologram the overall aberrations
for the optimal FTL can be separated8 into distortion (D),
astigmatism and field curvature (A), coma (C), and spherical
aberration (S) as

optD=- 2 +(2 a2)1/2

3 a3 1 a 3
+ ~~~~~~(42)2 (1- 2 ) 2 (-a2)3/ 2

T0ptA = (3 a2 + a-2) (1 _2)1/2

3 a 2 1 (X -X 0 )

2 (1- a 2) f

T0PtC = [3 (1 _a2)1/2 - 2 a] (x -

Topt 2 i 

Similarly for the spherical FTL,

ph +2 (2 -) (1-a2)l/2

20
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E 8

4
0) 0z
o 0

< -4
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Fig. 4. Aberrations as a function of the input angle for the on-axis
FTL. D, distortion; A, astigmatism and field curvature; C, coma; S,

(47) spherical aberration. (a) Spherical grating function; (b) optimal
grating function.

Vf)

TsPh =[(1 A]( f)*(49)

As an illustration, we calculated the various aberrations
for the specific FTL having D2 = -DI = 30 mm, f = di = do =
60 mm, W = 10 mm, and At = 1. The results of the aberra-
tions (in units of milliradians), as a function of the incident
input angle, are shown in Fig. 4. As shown by the results for
the spherical FTL in Fig. 4(a), the spherical aberrations are
zero, but the other aberrations increase rapidly as the input
angle increases. The results for the optimal FTL, shown in
Fig. 4(b), indicate that, although the spherical aberrations
increase, all the other aberrations decrease significantly.
The sum total of the aberrations for the optimal design is
evidently much better than for the spherical design.

Extension to a Two-Dimensional Fourier-Transform Lens
In order to extend the design to two dimensions, we used the
general approximation given by Eq. (21). The grating vec-
tor components Kxh and Kyh were found first by using Eq.
(32) and Appendix A, where, for Kyh, we let ar = 0, replaced
the variable x by the variable y, and used al(y) and a2(Y)
according to the on-axis format. For the specific lens having
(OA, = 400 and (0r)y = 0°, f = di = 100 mm, do = f cos 400 =
76.6 mm, D2y = -DjY = 20 mm, D2x = 19 mm, DI, = -27 mm
and W = 5 mm, we found that the optimal first distortion
coefficients are (clo), = 0.0023 and (clo)y = 0.0011. We then
performed ray-tracing analysis7 by using Eqs. (4)-(6) for the
optimal, as well as for the quadratic and spherical, two-
dimensional FTL.

The results, which do not take into account the diffraction
from the aperture, are shown in Fig. 5, which shows the spot
diagrams for the three lenses as a function of nine discrete
input angles of [Oxi, OM], where Oi and Oyi are the complements

I I I I I I I I
0

S

- AA I

I I I I I I I . I
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290 400
(a)

290 400
(b)

290 400
(c)

flTFFFF1 llllll of the angles between the incident ray and the x and y axes,
respectively; the ranges of angles Oxi and Oi were 290 < Oxi <

.:: _ ~~45° and -8° < Oyi < 8°, so hAxi = 16° and A\0i 16°. As
shown in Fig. 5(a), the small central spot diagram for the
spherical lens is essentially ideal because the recording and
readout geometries are identical. However, as the readout

l F l l l l l l l input angles differ from the recording angles, the spot dia-
grams spread substantially. Figures 5(b) and 5(c) show the

... - spot diagrams for the quadratic and optimal lenses, respec-
4>.} - tively; note that the scale is now magnified by a factor of 5.

For the quadratic lens, shown in Fig. 5(b), the spread in the
l lJ.lIl l l l l- spot diagram is generally much smaller than for the spheri-

l F l l l l l l cal lens; the spot diagrams are largest at the extreme angles
of 0; = 45°. Finally, as shown in Fig. 5(c), it is evident that
the optimal lens is uniformly superior to the other lenses,
with relatively small spot diagrams even at the extreme
angles.

I jjjL IiIIiiIt should be noted that in our optimal design example we
450 e introduced some distortions so as to minimize the spot size.

xi Had we desired to reduce the distortions as well, the spot
sizes would have increased by -10%. The overall spot sizes

l T l l l l l l l H for the optimal element would still be, of course, significant-
ly better than for the other designs. We also calculated the
exact distortions for the example of Oxi = 29°, On = -8°, and

:. : _ (clo)x = 0, (cio), = 0 and found that, for the optimal design,
the distortions would be 1 Am in the x direction and 7 ,m in
the y direction. The corresponding distortions for the
spherical design are 631 and 380 Am, respectively.

.... , , _ IMAGING LENS

The operation of a holographic imaging lens (HIL) is de-
scribed with the aid of one-dimensional representation in
Fig. 6. The object with width 2A is centered at A, and
extends from coordinates Al to A2. The holographic lens
aperture is 2D, and it is centered about the optical axis Z.
The distances from the holographic element to the object
and image planes are do and di, respectively. Finally, a stop

I L L l llI_ aperture is inserted between the object and the imaging lens,
450 e at such a distance as to satisfy the relation d,,/d02 = A/D; the

xi width of the stop aperture is 2W, and it extends from coordi-
nates W2 to W1. For imaging, it is necessary that spherical
waves emerging from the object points : intercept the HIL
and be transformed into spherical waves that converge to
points xi at the imaging plane. The locations of xi can be
expressed by the general relation

Xi = -( + O)M, (50)

where M denotes the magnification of the imaging lens andq
denotes a constant off-axis displacement of the image.

It is convenient in designing the HIL to let the input
parameter a be an object point F. Consequently, the nor-
malized propagation vectors of the input rays can be written
as

R (x, a) = R]x(x, °) =[(X - + XX ~ ~ C [(X - /3)2 +d012 (51)

450 ~ Fig. 5 (left). Spot diagrams for the off-axis FTL. (a) Spherical
4x j grating function; (b) quadratic grating function; (c) optimal grating

function.
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tOBJECT PLANE
x

STOP APERTURE
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4
'IMAGING LENS

Xi

IMAGE PLANE

z

I 'd--D

W-dol X- do2 ,>< -di >

Fig. 6. Readout geometry for an off-axis HIL.

and the normalized propagation vector of the desired output
rays becomes

~dd(x, a){ (x /)= [X + M+ + 01-
Xd ~ ,)1 1 1

(52)

lens design, where the recording of the holographic lens is
done with two spherical waves, is

[K.,(x)Isp = [(x-A(x - A,)
EKh() ph =[(x -A A)2 +d,] 2

Substituting Zxi from Eq. (51) and fZxd from Eq. (52) into Eq.
(13), and for W(a) = 1 and ,o = 1, we obtain[/32(X= [:2X ' x) / +-[X + M () + d j)]Kx - d (53)

[(X- 0)2 + d0 2]1/2J

where the pupil function, P(x, a) in Eq. (13), is expressed by
the upper [:2(x)] and lower [/ 1(x)] locations of object points
whose rays intercept the holographic lens at a point x. The
expressions for / 2(x) and / 1(x) are given in Appendix B.
The solution of Eq. (53) yields

Kxh (x) = 1{[X + M(/ 2(X) + n)]2 + 2112

+
[x + M(A, + n)]

(57)
I[x + M(A, + nq)]2 + d 211/

The grating vector for the quadratic imaging lens design is

X[Kx,(X)] + a + ai'
L ~ Jq f r. (58)

where

ar = sinO =-- 2A+cd 2____r0 (A C2 +d0)/

too

90

8o

- 1 {[X + M(/ 1(X) + -)]2 + 21/2 + {[X -1(X)2

+ d -211/2 {[X - /2 (X)]2 + d 0 211/2).

-

(54) N

- 0
a.

The general solution given by Eq. (54) can be simplified by
expanding and assuming paraxial approximation, and re-
moving the stop aperture, to obtain

[KX(X)]i[lified - -M(A + d )]i

where

1= 1 + 1 (56)
f do di

The corresponding grating vector for the spherical imaging
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Fig. 7. Spot size as a function of the location of the object points (O)
for a HIL with a stop aperture of 2 mm (W = 1 mm): spherical
(sph), quadratic (q), and optimal (opt) grating functions.
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Fig. 8. Distortions as a function of the location of the object points
(3) for a HIL with a stop aperture of 2 mm (W = 1 mm): spherical
(sph), quadratic (q), and optimal (opt) grating functions.
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Fig. 9. Spot size as a function of the location of the object points
(1), for a HIL without a stop-aperture configuration: spherical
(sph), quadratic (q), and optimal (opt) grating functions.

also calculated the amount of distortions by subtracting the
actual (average) location of each spot from the desired loca-
tion as given in Eq. (50). These calculations were performed
with a stop aperture of 2 mm (W = 1 mm) as well as without a
stop aperture (W = 10 mm).

The calculated results of the spot sizes and the distortions
as functions of the object point locations for the optimal,
quadratic, and spherical imaging lenses are shown in Figs. 7-
10; these results are symmetric about the center of the object
plane, and only half the data are shown. Figures 7 and 8
show the results obtained with a stop aperture of 2 mm. As
shown in Fig. 7, the spot sizes are comparable for all the
designs when the location of the object points is less than 6
mm from the center. Beyond 6 mm the spot sizes are small-
est for the optimal design, they deteriorate for the spherical
design, and they deteriorate even more for the quadratic

Ito

800

00

O 60
0
0co 50/_00

40 _ /opt. sph. q

30-

20-

0o / 1 1 1 1 1 1 1 1 1
0 2 4 6 8 t0

3 LOCATION OF THE OBJECT POINTS (mm)

Fig. 10. Distortions as a function of the location of the object
points (/), for a HIL without a stop-aperture configuration; spheri-
cal (sph), quadratic (q), and optimal (opt) grating functions.

2.2

2.0

and

ar, = sin Or =
M(A, + V)

(60)
I[M(A, + 7)]2 + di' /

It is evident that, for paraxial approximation and small off-
axis angles, the optimal, quadratic, and spherical designs
yield identical grating vectors.

As an illustration, we calculated the grating vectors and
determined the performance of a specific one-dimensional,
on-axis imaging lens by using the optimal [Eq. (54)], the
spherical [Eq. (57)], and the quadratic [Eq. (58)] designs.
The specified parameters of the lens were A2 = 10 mm, Al =

-10 mm, D = 10 mm, do = 220 mm, d01= 110 mm, M = 10, t
= 0, and di = Md, = 2200 mm. To determine the spot sizes
at the image plane di, we performed a ray-tracing analysis,
usings Eqs. (4) and (6), and calculated the standard devi-
ation for the locations of the converging rays at the image
plane as a function of the location of each object point. We
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Fig. 11. Mean-squared difference E
2 as a function of the stop

aperture (W), for spherical, quadratic, and optimal HIL's.
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design. Figure 8 shows that the distortions for the optimal
design are significantly smaller than those for the quadratic
and spherical designs. Figures 9 and 10 show the results
obtained without a stop aperture. As is shown in Fig. 9,
there is no significant difference in the spot sizes for any of
the three designs. The distortions are identical for all three
designs and fall along the same line, as shown in Fig. 10.

It is also possible to evaluate the performance of the de-
signs with the mean-squared difference of the propagation
vectors, E2, from Eq. (8). As an illustration, we calculated
the mean-squared difference as a function of the width of the
stop aperture. The results for the three designs are shown
in Fig. 11. The value of E2 for the optimal design is lower
than for the spherical and quadratic designs, indicating a
better lens performance. The improvement in performance
is greatest for the smaller stop apertures. For example,
when the stop aperture is 2 mm (i.e., W = 1 mm) the im-
provement between the optimal and spherical design, E0 pt2/
Esph2, is 26.3, whereas for no stop aperture (i.e., W = 10 mm)
the improvement is 1.42. The reason is that, as the stop
aperture decreases, the rays from the object intercept a
smaller local hologram so that the optimization for each is
better.

As in the case of the FTL design, it is possible to introduce
some trade-off among the various aberrations [as noted in
Eq. (24)] so as to obtain a specific desired performance.
Finally, the two-dimensional extension for the on-axis con-
figuration is given by Eq. (16). For the off-axis configura-
tion the general procedure given by Eq. (21) can be followed.

a1(x) =
(x - W2 )

(Al)
[(X - W2 )2 + (Ay)2 + do2]1/2

when

otherwise

- 1(X) = amini (A2)

In Eq. (Al), Ay is defined by Ay - Yobj - y, where Yobj

represents the transparency coordinate at the object plane
and y represents the coordinate at the hologram plane. For
a one-dimensional grating function, Ay = 0, whereas, for a
two-dimensional grating function (approximated by two
separated one-dimensional grating functions), Ay is chosen
to yield a minimum al(x). The direction cosine amin is for
the plane wave having the lowest angular direction while still
completely intercepting the hologram.

The upper [a2(x)] direction cosine is

a2(X) =
(X - W1 )

(A3)
[(X - W1)

2 + (Ay) 2 + d 2]1/2

when

e2 (X) < aemax;

otherwise

a2(x) = amax. (A4)

CONCLUSION

We have presented a new method for designing optimal
HOE's. It is based on analytic ray tracing and relies on the
propagation vectors of the waves and the grating vector
rather than on the phases of the waves and the grating
function. Our optimization method provides an analytic
solution for the optimal grating vector usually without any
approximation. Thus we were able to obtain an optimal
solution for the grating function for any one-dimensional
element and for on-axis two-dimensional elements having
circular symmetry; for two-dimensional off-axis elements
some approximation is needed to obtain the necessary grat-
ing function. The necessary arbitrary grating functions can
be realized by resorting to computer-generated or computer-
originated holograms.

To illustrate the optimization procedures, FTL's and
HIL's were designed and evaluated. The results revealed
that lenses designed with our optimization method perform
far better than spherical and quadratic holographic lenses.
The improvement is even greater when the sizes of the local
holograms are reduced with respect to the overall holograph-
ic element.

For a one-dimensional grating function, Ay = 0, whereas for
a two-dimensional grating function Ay is chosen to yield the
maximum a2 (x). The direction cosine anmax is for the plane
wave having the highest angular direction while still com-
pletely intercepting the hologram.

APPENDIX B: EXPRESSIONS FOR THE
EXTREME LOCATIONS OF OBJECT POINTS
03(x) AND 02(x)

The expressions for the upper [/2(x)] and the lower [/ 1(x)]
locations of object points that represent the pupil function
are given by using the geometry and the notation of Fig. 6.

The lower [/ 1(x)] location is

d 'W+Ac (d + d '2) 
-W + A~d(,,

(doC + d0 2)

(Bi)

when

31(x) > A 1 ;

otherwise

APPENDIX A: EXPRESSIONS FOR THE
EXTREME DIRECTION COSINES a1(x) AND
a2(X)

The expressions for the lower [al(x)] and the upper [a 2 (x)]
direction cosines that represent the pupil function are given
by using the geometry and the notation of Fig. 1.

The lower [al(x)] direction cosine is

$ 1 (X) = A1 .

The upper [/32 (x)] location is

d0 + ( d og)
L W+A (d, + d 0 2

)

(B2)

1 A~d0 2

XJ +W+( Acd,)

(B3)
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when

$ 2(X) < A2 ;

otherwise

: 2(x) = A2. (B4)
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