
April 1, 1991 / Vol. 16, No. 7 / OPTICS LETTERS 523

Holographic axilens: high resolution and long focal depth
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We report a novel aspheric holographic optical element, the holographic axilens, for achieving extended focal depth
while keeping high lateral resolution. The element is designed according to special optimization techniques and
recorded as a computer-generated hologram. The results for a specific element, which has a depth of focus of 30
mm, a lateral resolution of 80 mm, a focal length of 1250 mm, and a diameter of 12.5 mm at a wavelength of 633 nm,
are presented.

Optical elements that have long focal depth as well as
high lateral resolution are needed for a variety of ap-
plications, including precision alignment and profile
measurements. Conventional elements (spherical
lenses, mirrors, etc.) cannot achieve these two goals
simultaneously; high lateral resolution requires high
numerical apertures, whereas long depth of focus re-
quires low numerical apertures. Specifically, the
combination of Abbe's formula for lateral resolution
(1/x) and Rayleigh's formula for the depth of focus 6z
yieldsl

6= 4(bx)2 (1)

where X is the wavelength of the light. Possible ap-
proaches to improve this situation include apodization
and digital restoration.2 These approaches result in
some loss of energy or involve a complicated optical
system or must incorporate digital computers. An-
other approach uses an axicon,3 a conical optical ele-
ment that may have an arbitrarily long depth of focus
while still maintaining a high lateral resolution; the
axicon has recently been suggested as an element that
can produce a nearly nondiffracting beam.4 Unfortu-
nately, the axicon concentrates only a small fraction of
the energy into the focused beam, which results in an
extremely low light efficiency.

In this Letter we present a special aspheric holo-
graphic optical element that can have arbitrarily long
focal depth as well as high lateral resolution. This
element essentially combines the properties of the
long focal depth of an axicon and the high energy
concentration of a conventional spherical lens and is,
therefore, named an axilens. We derive the phase
function for a specific axilens, record it as a computer-
generated hologram, and then verify the numerical
simulations experimentally.

A spherical holographic lens adds a spherical phase
to an incoming monochromatic wave front with a
wavelength X of the form

(r) = 2r C 2 (2)

where r is the radial coordinate and f is the focal length
of the holographic lens. By resorting to the paraxial

case, the spherical phase may be approximated by a
quadratic term

221- r2

(3)

where a constant term was omitted. Such a lens fo-
cuses the incoming wave to an Airy pattern,5 with
approximately 84% of the energy contained within a
central peak of width equal to 2.44XF#, where F# = fi
2R and R is the radius of the hologram. The depth of
focus is proportional to XF#2, where the proportionali-
ty constant depends on the exact definition used for
the focal depth,5 but is typically approximately one.
If, instead of a constant focal length f, the holographic
lens would be composed of zones each having a differ-
ent focal length, the depth of focus would increase.
By choosing these zones to be concentric rings with an
infinitesimal width, we can express the lens phase
function as

27) r 2
A0 =X2f(r) ' (4)

where f(r) is a continuous function instead of a con-
stant. The simplest nonconstant function that can be
used is a linear function f(r) = ar, where a is a constant.
Insertion of this linear function into Eq. (4) yields
exactly the phase function of an axicon,3

(5)0(r)= 7 r.
A a

The focal range along the z axis of such an axicon is 0 <
z < aR. The width of the central peak is approximate-
ly aX, and the fraction of the energy that the peak
contains is approximately a A/R, which is typically a
very small number.

A more general form for the variable focal length f(r)
may be the following monotonic function:

f(r) = fo + arb, (6)

where a, b, and fo are constants. For a positive con-
stant a, the geometrical-optics prediction of the focal
range for an element with the focal length of Eq. (6)
will be fo < z < fo + aRb, which leads to a focal depth 3zg
of aRb. The geometrical parameters and the distribu-
tion of rays for such an axilens are shown in Fig. 1.
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Fig. 1. Geometrical parameters and schematic distribution
of rays with an input plane wave focused by an axilens.

The constant b depends on the desired intensity
distribution of the central peak. For example, if we
require that the central peak throughout the focal
range have uniform intensity, then the area of each
ring having a focal distance between f and f + bf should
be the same. Since the area of such a ring is r6r, we can
express this requirement as

bf(r) = 2arbr.

Integration of Eq. (7) on both sides yields

f(r) = fo + ar2 .

where r denotes the radial position at the plane and Jo
is the zero-order Bessel function. The results for an
axilens with the parameters A = 633 nm, R = 12.5 mm,
fo = 1220 mm, and 6 zg = 29 mm are presented in Figs. 2
and 3; these parameters were chosen to illustrate ex-
tended focal depth and yet reasonable energy concen-
tration in the focused beam.

Figure 2 shows the intensity distribution along the z
axis I(z, r = 0), in the focal range of the axilens. For
comparison, we also present the corresponding distri-
bution for a spherical holographic lens that has the
same aperture and a focal distance of 1250 mm. As is
evident, the depth of focus, over which the intensity
along the axis is constant, is approximately three times
greater for this axilens than for the spherical lens. As
expected, the peak intensity is lower for the axilens by
approximately the same factor. Indeed, in general, we
found that as the focal depth is increased, the peak
intensity decreases by the same factor. It is interest-
ing to note that the focal range has shifted by approxi-
mately 15 mm in comparison with the geometrical-
optics prediction; it now begins at a distance of ap-

1.0

(7)

0.8

(8)

Equation (8) indicates that the requirement for uni-
form intensity distribution of the peak results in b = 2.
Note that Eq. (7) will differ for other intensity distri-
butions of the central peak in the focal range, and
consequently b will be different. The constant a in
Eq. (6) can be expressed in terms of the desired focal
depth of the element as

2Zg
(9)

Finally, by substitution of Eqs. (8) and (9) into Eq. (4),
the phase function of the axilens can be written as
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Fig. 2. Calculated intensity distribution as a function of
the axial distance around the focal region for the axilens and
a spherical holographic lens.

r2,0 (r) = r
A c6Z

/0 + -' r2
(10)

The parameters fo and R in Eq. (10) can be chosen
according to a specific application for the axilens.

We performed numerical simulations and initial ex-
periments to verify the above geometrical-optics pre-
dictions for the depth of focus. We used a hologram
with a phase function of Eq. (10) that is illuminated
with a unit-amplitude plane wave. For the simulation
we calculated the intensity distribution at any plane
along the z axis by solving numerically the Fresnel
diffraction integral,

I(z, r) = 2- 2 | expli27r[r'2/2Az - 0(r')]I

2
X J0 (27rrr'/Az)r'dr' , (11)
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Fig. 3. Calculated intensity distribution at different dis-
tances z from the axilens: dashed curve, z = 1235 mm; solid
curve, z = 1250 mm; dashed-dotted curve, z = 1265 mm.
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Fig. 4. Photographs of the focused spots (top) and the intensity
(a) z = 1235 mm, (b) z = 1250 mm, (c) z = 1265 mm.

proximately 1235 mm instead of 1220 mm from the
axilens. This shift may be attributed to unequal in-
terference effects along the z axis.

To determine the exact intensity distribution at a
certain distance from the axilens, we solved Eq. (11) at
three different distances from the lens. The results,
shown in Fig. 3, give the intensity distribution as a
function of radial distance for z = 1235 mm, z = 1250
mm, and z = 1265 mm. As is evident, the intensity
distribution of the central lobe for the axilens remains
close to the diffraction-limited spot size of 2.44AF
80 /im. Note that the sidelobes for the intensity dis-
tribution of the axilens are higher than for an Airy
pattern that would be obtained with a spherical lens;
consequently, the energy in the central lobe is re-
duced, typically by the same factor as the peak intensi-
ty.

For the experiment the axilens was recorded as a
binary computer-generated hologram.6 In order to
separate the diffraction orders, a linear phase term of
27rx sin OA/A was added to the axilens phase function of
Eq. (10). The off-axis angle Ox was chosen as 0.05 rad,
and x is one of the transverse coordinates. The axi-
lens was then illuminated with a uniform plane wave
derived from a He-Ne laser of X = 633 nm, and the
intensity distribution was detected at three different
distances that correspond to those chosen in the simu-
lation. The results are presented in Fig. 4, which
shows photographs of the focused spots as well as

cross sections (bottom) at several distances from the axilens:

cross-sectional traces that were directly detected with
a charge-coupled-device array. The intensity distri-
bution is shown at z = 1235 mm [Fig. 4(a)], z = 1250
mm [Fig. 4(b)], and z = 1265 mm [Fig. 4(c)]. By
comparison of these experimental results with the nu-
merical results of Fig. 3, it is evident that good agree-
ment exists; some difference in the sidelobe levels may
be attributed to thickness variations of the recording
plate.

We conclude by noting that it is possible to increase
the focal depth of the axilens even further, but with a
corresponding reduction in intensity along the lens
axis. Moreover, the approach is also valid for small-
F# axilenses, but there the paraxial approximation of
Eq. (3) may no longer be valid, and Eq. (2) must be
used directly.
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