
238 OPTICS LETTERS / Vol. 29, No. 3 / February 1, 2004
Propagation-invariant vectorial Bessel beams obtained by use
of quantized Pancharatnam–Berry phase optical elements
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Propagation-invariant vectorial Bessel beams with linearly polarized axial symmetry based on quantized
Pancharatnam–Berry phase optical elements are described. The geometric phase is formed through the
use of discrete computer-generated space-variant subwavelength dielectric gratings. We have verified the
polarization properties of our elements for laser radiation at 10.6-mm wavelength and also demonstrated
propagation-invariant, controlled rotation of a propeller-shaped intensity pattern through the simple rotation
of a polarizer. © 2004 Optical Society of America
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Propagation-invariant scalar fields have been exten-
sively studied, both theoretically and experimentally,
since they were proposed by Durnin et al.1 These
fields were employed in applications such as optical
tweezers and for transport and guiding of micro-
spheres.2 Although there has recently been consid-
erable theoretical interest in propagation-invariant
vectorial beams,3 experimental studies of such beams
have remained somewhat limited.4,5 One of the most
interesting types of propagation-invariant vectorial
beam is the linearly polarized axially symmetric beam
(LPASB).3,4,6 These vectorial beams are characterized
by their polarization orientation, c�v� � mv 1 c0,
where m is the polarization order, v is the azimuthal
angle of the polar coordinates, and c0 is the initial
polarization orientation for v � 0. LPASBs can be
formed by interferometric techniques, by the intracav-
ity summation of two orthogonally polarized TEM01
modes,7 or by liquid-crystal devices.8 However,
all these methods are somewhat cumbersome, are
unstable, or have low eff iciency. We recently
demonstrated the use of continuous space-variant
subwavelength gratings for the formation of LPASBs.6

However, applying the constraint to continuity of the
subwavelength grating led to a variation of the local
period. As a result, the elements became limited in
their physical dimensions, and optimization of the
photolithographic process was complicated.

In this Letter we propose the formation of
propagation-invariant vectorial Bessel beams by
use of quantized Pancharatnam–Berry phase op-
tical elements (QPBOEs) followed by an axicon.
QPBOEs utilize the geometric phase that accom-
panies space-variant polarization manipulations to
achieve a desired phase modif ication.9 To test our
approach we formed QPBOEs with different polar-
ization orders as computer-generated space-variant
subwavelength gratings upon GaAs wafers for use
with 10.6-mm laser radiation. By discretely control-
ling the local grating orientation, which has uniform
periodicity, we could form complex vectorial f ields
with elements of unlimited physical dimensions. We
experimentally determined the optical performance
of the elements by measuring the polarization distri-
bution of the emerging beam through the QPBOE,
verifying the high quality of LPASBs. Subsequently,
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propagation-invariant vectorial Bessel beams were
achieved by insertion of an axicon after the QPBOEs.
Finally, the resultant beams were transmitted through
a polarizer that produced a unique propagation-
invariant scalar beam. This beam has a propeller-
shaped intensity pattern that can be rotated by
simple rotation of the polarizer. We therefore have
demonstrated the formation of a vectorial Bessel
beam by using simple, lightweight thin elements and
exploited that beam to perform a controlled rotation
of a propeller-shaped intensity pattern that can be
suitable for optical tweezers.10

The Jones vector of a LPASB is given by
jPm� � �exp�imv� jR� 1 exp�2imv� jL���

p
2, where

jR� � �1,2i�T�
p
2 and jL� � �1, i�T�

p
2 are the helical

basis unit vectors and the superscript T denotes a
vector transposition. The jPm� state represents the
linearly polarized beam whose polarization azimuthal
angle is given by c � mv (we chose the reference axis
such that c � 0 at v � 0). Note that, because the
azimuthal angle is a p-modulo function, the polariza-
tion state repeats itself 2m times for each trip about
the beam axis. Propagation of the jPm� state when it
is transmitted through an axicon can be approximated
by the stationary phase method4 to yield

jBm� � Kz� f �r� jPm��

� �pa
p
z�l �exp�ik��1 2 a2�2�z 1 r2�2z 2 l�8�	

3 �2i�mJm�kar� jPm� ,

where Kz is the Fresnel free-space propagation opera-
tor for propagation distance z, r is the radius of the
polar coordinates, k is the wave number, and Jm is the
mth-order Bessel function of the f irst kind. In this
case the axicon phase function is paraxially approxi-
mated by f �r� � exp�2ikar�, where a � u�n 2 1� and u
and n are the inclination angle and the refractive index
of the axicon, respectively. This paraxial calculation
confirms propagation invariance of the polarization
state as well as the Bessel intensity distribution,
except for a linear growth function of z that one can
remove by apodizing the incoming intensity.11 For
this vectorial Bessel beam the intensity profile is de-
termined by m, the polarization order of the original
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LPASB, whereas the local polarization state is un-
changed by the axicon.

QPBOEs are considered constant retardation wave
plates for which the fast axes are changed along the
length of the elements. It is convenient to form such
space-varying wave plates by use of subwavelength
gratings. When the period of a periodic structure
is smaller than the incident wavelength, only the
zero order is a propagating order, and all other or-
ders are evanescent. The subwavelength periodic
structure thereby behaves as a uniaxial crystal with
the optical axes parallel and perpendicular to the
subwavelength grooves.9 Therefore, by fabrication
of a constant-period subwavelength structure for
which the orientation of the subwavelength grooves is
changed along the length of the element, space-variant
wave plates are obtained. These gratings are con-
veniently described by a space-varying Jones matrix
T �r,v� � R21�u�r,v��WR�u�r,v��. In this case, R�u�
is a two-dimensional rotation matrix and u�r,v� is
the local orientation of the grating. W is the Jones
matrix of a perfect retarder and represents the local
behavior of the grating. Choosing grating parameters
to achieve a local retardation of p rad and illuminating
the element with linearly polarized light result in a
Jones vector of the form

jEout� �
1
p
2

exp�i2u�r,v�� jR�

1
1
p
2

exp�2i2u�r,v�� jL� .

The jEout� state comprises two scalar waves of or-
thogonal circular polarization. The phase of each
scalar component results from manipulation of the
space-variant polarization state and therefore is
geometric in nature. Selecting a local subwavelength
groove orientation such as u � mv�2 results in a
QPBOE with the desired jPm� state when the element
is illuminated with linearly polarized light. In our
approach, the groove orientation is discretely approxi-
mated by u�r,v�jmod p � FN �mv��2, where FN �x� is a
step function that has discrete steps of 2p�N . In this
case, N indicates the number of quantized levels.9

To achieve such QPBOEs we formed four chrome
masks by use of high-resolution laser lithography
for m � 1, 2, 3, 4. We used a 2-mm subwavelength
grating period and N � 16 quantized levels to form
masks 1 cm in diameter. Magnified geometries of the
masks are given in Fig. 1(a). It was previously shown
that 16-level QPBOEs diffract more than 98% of the
intensity into the f irst order.9 Note that the area in
the center of the mask where the pattern is distorted is
less than 10 mm in diameter and can therefore be dis-
regarded. The patterns were transferred by contact
lithography to 500-mm-thick GaAs wafers (refractive
index, 3.27) onto which a 200-nm-thick layer of SiNx
had previously been deposited. The SiNx deposition
was performed by plasma-enhanced chemical vapor
deposition at 900 mTorr and 300 ±C. At this stage,
adhesion of a 70-nm Ni layer was used for the lift-off
process. Next, the SiNx layer was etched through the
Ni stripes, which served as a mask. Reactive ion etch-
ing was performed for 30 s at room temperature with
CF4 and O2 at gas f low rates of 35 and 15 SCCM, re-
spectively, where SCCM denotes cubic centimeters per
minute at STP, and at a pressure of 80 mTorr. The
GaAs was etched by electron cyclotron resonance, with
the etched SiNx layer serving as a mask. The condi-
tions for electron cyclotron resonance were 20 SCCM
of Cl2, 5 SCCM of Ar, 75 W of rf power, 600 W of
microwave power, and 100 ±C. The remaining SiNx
was removed with HF acid. The result was a space-
variant grating of 5-mm nominal depth with a 5% stan-
dard deviation (STD). At this stage an antiref lection
coating was provided to the backside of the elements
to f inish forming the desired QPBOEs. Scanning-
electron microscope images of the elements’ central sec-
tions are given in Fig. 1(b). A high aspect ratio (
1�5)
and grooves of rectangular shape were achieved.

Following the fabrication, the elements were illu-
minated with a linearly polarized plane wave at a
wavelength of 10.6 mm from a CO2 laser. The local
azimuthal angle was observed by insertion of a po-
larizer directly behind the QPBOEs. The resultant
intensities are depicted in Fig. 2(a). Note that a
specific azimuthal angle returns 2m times within
each trip about the beam’s axis. We measured the
normalized Stokes parameters (S1, S2, S3) of the

Fig. 1. (a) Magnified geometries of the masks for various
polarization orders. (b) Scanning-electron microscope im-
ages of the central parts of the corresponding elements.

Fig. 2. (a) Experimental intensity distributions, directly
after the elements, for beams emerging from a linear polar-
izer for four polarization orders. (b) Measured local azi-
muthal angles of the beams.
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Fig. 3. Intensity distributions at 8 cm beyond the axicon
for (a) m � 2 and (b) m � 3. The strips arranged along the
circumference of a beam illustrate the local azimuthal an-
gles. (c), (d) Experimental (f illed circles) and theoretical
(solid curves) intensity cross sections for m � 2 and m � 3,
respectively, at 8, 9, and 10 cm beyond the axicon.

Fig. 4. (a) Propeller-shaped intensity patterns of the
emerging beams from the QPBOEs followed by an axicon
and a polarizer for four polarization orders, m � 1, 2, 3, 4,
from left to right. (b) Controlled rotation of the propeller-
shaped intensities by rotation of the polarizer by 90±;
dashed lines and dotted curves, rotation angles of the
patterns.

emerging beams in the near field.6 Figure 2(b) shows
the measured local azimuthal angles of the beams
calculated by c � tan21�S2�S1��2. The typical STD
of c from the desired value was found to be 1.5±.
Note that the measured azimuthal angle distributions
are in good agreement with the desired values given
by c � mv. The local ellipticity was calculated as
x � sin21�S3��2, resulting in a typical average value
of 4.3± with a typical STD of 4±. The deviation of
the ellipticity from its desired zero value is related
to errors in the nominal etching depth, whereas its
relatively large STD results from nonuniformity of the
etching depth. The azimuthal angle is determined
by the groove’s orientation and is, therefore, relatively
accurate. The ability to create high-quality LPASBs
by use of QPBOEs is therefore demonstrated. We
obtained propagation-invariant vectorial beams by
inserting a ZnSe axicon (u � 3±, n � 2.4) following the
QPBOEs.
Figures 3(a) and 3(b) show the intensities at 8 cm
beyond the axicon for beams of polarization orders
m � 2, 3, respectively. The white stripes arranged
along the circumferences of the beams illustrate the
local azimuthal angles. Figures 3(c) and 3(d) show
the theoretical and experimental normalized intensity
cross sections for m � 2, 3, respectively, at 8, 9, and
10 cm beyond the axicon. The theoretical prediction
is given by the jBm� state. We also measured a
typical STD of the azimuthal angles from the desired
values over the propagation distances to be 4.7± and
a typical ellipticity of 5.5± with a STD of 5.7±. We
thereby experimentally conf irmed the formation of
propagation-invariant vectorial Bessel beams.

Finally, we demonstrated the ability to achieve
controlled rotation of the intensity pattern by in-
serting a polarizer behind the axicon. It can be
shown, again by use of a stationary phase approxi-
mation, that transmittance of propagation-invariant
LPASBs through a polarizer results in an amplitude of
~Jm�kar�cos�mv�. This beam is propagation invari-
ant, with a propeller-shaped intensity pattern given
by I ~ Jm

2�kar� �1 1 cos�2mv��. These propeller-
shaped intensities are depicted in Fig. 4(a). As ex-
pected, each propeller comprises 2m fringes. If the
polarizer is rotated by an angle v0, the fringes rotate
by an angle v0�m. This behavior is demonstrated in
Fig. 4(b), for which the polarizer has been rotated by
90±. The dashed lines and dotted curves indicate the
resultant rotation of the propellers. It is evident that
rotations of 90±, 45±, 30±, and 22.5± were obtained for
m � 1, 2, 3, 4, respectively.

We have therefore demonstrated the formation of
LPASBs by use of thin, lightweight elements and have
shown that these beams become propagation invariant
when they are transmitted through an axicon.

E. Hasman’s e-mail address is mehasman@
tx.technion.ac.il.
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