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Blazed holographic gratings for polychromatic and
multidirectional incidence light
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A new approach for optimizing the groove depth of blazed holographic gratings that are illuminated by light
with a wide range of wavelengths or incidence angles is presented. The approach is based on choosing the
groove depth that maximizes the overall diffraction efficiency over the entire range of incidence angles and
wavelengths. The scalar approximation is used for the diffraction efficiency calculations, with some results
verified by rigorous vectorial calculations. Analytic solutions are given for some simple examples, together
with experimental results.

1. INTRODUCTION

Surface-relief diffraction gratings have attracted wide-
spread interest because they can be exploited for a variety
of applications. For example, these gratings serve as the
diffraction elements in spectroscopy, as holographic lenses
for both visible and other radiations, and as the elements
for laser beam coupling. An important consideration for
these surface-relief gratings is that their diffraction effi-
ciencies be as high as possible. When the gratings are
illuminated with a beam at a specific wavelength and a
specific angle of incidence, it is possible to obtain 100% dif-
fraction efficiency with a properly blazed groove shape.`'
However, when the beam is polychromatic or is incident at
orientation angles different from those for which the blaz-
ing was designed, the diffraction efficiency is reduced
substantially.4'5 Some attempts have been made to en-
sure high diffraction efficiency over a wide range of wave-
lengths, for example, by exploiting conical diffraction
arrangements.6

We present a new approach for optimizing the groove
depth of blazed gratings that are illuminated by light with
a wide range of wavelengths or incidence angles. The ap-
proach is based on calculating the diffraction efficiency as
a function of the incidence angle, the wavelength, and the
groove depth and then choosing the depth that maximizes
the overall diffraction efficiency over the entire range of
angles and wavelengths. The diffraction efficiency is cal-
culated by exploiting the scalar approximation,"7 with
some results verified by rigorous vectorial calculations.8

We present the general relations, analytic solutions for
some simple examples, and experimental results.

2. BASIC RELATIONS

Blazed holographic gratings can be of either the trans-
mittive or the reflective configurations. We chose to
illustrate our approach with reflective gratings, but it
can readily be applied to transmittive gratings as well.
Figure 1 depicts the blazed reflection grating under con-
sideration. A monochromatic plane wave with a wave-
length A is incident upon the grating at an angle 0i. It is

diffracted into several well-defined orders at angles m
that are given by the diffraction relation

sin Om - sin Oi = mA/A, (1)

where A is the grating period. We assume that the re-
flection from the grating is perfect, so we neglect the
absorption. The depth profile of the blazed grating is ex-
pressed as

f(x) = xd/A for 0 < x < A, (2)

where d is the (maximal) groove depth. If A is much
larger than A, the diffraction efficiency for any order can
be obtained with the scalar approximation.' Adapting
the results for a dielectric grating 7 to our reflection grat-
ing yields the following relation for the wave amplitude of
the mth diffracted order Rm:

Rm = 4A f exp[-imKx - ik(cos Oi + cos Om)f(x)ldx,

(3)

where k = 27r/A and K = 2vr/A.
For gratings with a blazed groove shape, having the

depth profile given by Eq. (2), the integral of Eq. (3) can be
solved analytically to yield

Rm = - [exp(- i2rA) - 1], (4)
27TA

where

A = [d(cos Oi + cos Om)/A] - 1. (5)

The diffraction efficiency of the mth order, m, is given
simply by the square of the wave amplitude as

71m = RmRm* = 21 2 (1 - cos 27,A), (6)

where * denotes a complex conjugate. This expression
has a maximal value of 1 for A = 0. Equation (6) indi-
cates that, for an incident beam at a specific angle and
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detector. The maximum of E(d) can be found for any
general distribution function co(Oj,A) by solving numeri-
cally the integral of Eq. (8) for different values of d. Such
a numerical procedure involves lengthy and cumbersome
calculations. Fortunately, there are some common and
important applications with simpler distribution func-
tions for which the optimal depth can be found analyti-
cally. We consider two specific examples, in which the

d distribution function has either one wavelength or one
fixed angle.

A

Fig. 1. Geometry of a blazed reflective holographic grating.
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Fig. 2. Calculated diffraction efficiency as a function of the angle
of incidence for a blazed grating with a groove depth of 0.50A.
Curve: scalar calculation; triangles: vectorial calculation.

wavelength, it is possible to obtain a diffraction efficiency
of 100% with a maximal groove depth of

A (7)
cos O + cos m

However, at other angles and wavelengths, the diffraction
efficiency is reduced considerably. As an illustration, we
calculated by using Eq. (6) the diffraction efficiency for
incidence angles ranging from -45° to 450. The grating
period was A = 30A, and the groove depth was d = A/2
(appropriate for normal incidence). The results are shown
in Fig. 2, together with the results obtained from a rigor-
ous vectorial formalism8 in which TE polarization was as-
sumed. As is shown, good agreement exists between the
scalar and the vectorial results, and both predict a de-
crease of as much as 25% in the diffraction efficiency at
the extreme angles.

To find the optimal groove depth that would maximize
the diffraction efficiency of the mth order for the en-
tire range of angles and wavelengths, we propose to maxi-
mize the following expression for the overall diffraction
efficiency:

E(d) = ff cW(0iA)71m(0iA, d)dOdA, (8)

where w(0l, A) is the angular and spectral energy distribu-
tion of the incident light and q7m(0i, A, d) is given by Eq. (6).
Note that co(0i, A) may also account for practical consid-
erations, such as the possible sensitivity variation of the

3. RANGE OF INCIDENCE ANGLES

Let us consider a monochromatic incidence light whose
angular distribution is uniform over the range 0min < Oi <
Omax and thus has the distribution function

(0 = (A - Al) if Omin < Oi < Omax
0 elsewhere (9)

The overall diffraction efficiency of the grating is ob-
tained by incorporating Eq. (9) into Eq. (8) to yield

E(d) = 7jm(fitAoxd)d0.
omin

(10)

To solve the integral of Eq. (10) analytically, we resort to
several assumptions. First, we deal only with the first
diffraction order (m = 1), so that, together with making
the scalar grating assumption (A >> A), we may replace
Om by Oi in Eq. (5); actually, A 5A is sufficient and re-
sults in an error of less that 1%. Second, we expand the
cosine function in Eq. (6) in a power series and retain only
the terms up to the fourth power; for angles of incidence
of less than 450 this approximation results in an error of
less than 3%. Finally, we assume for simplicity that the
range of incidence angles is symmetric about the normal,
i.e., min = - 0

max- Under these assumptions the integral
of Eq. (10) may be solved analytically to obtain

E(d ) =1- 1.2 [20ma - (2d/Ao)4 sin Omax
+ A0 +0 im60max
+ (2 d/A )2(o ma + 0.5 sin 20ma.)] -
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Fig. 3. Calculated diffraction efficiency as a function of the
angle of incidence for a blazed grating with a groove depth of
0.55A (optimal depth). Curve: scalar calculation, triangles:
vectorial calculation.
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Next, the wavelength of the CO2 laser was changed to
AO = 9.6 ,m, and the diffraction efficiency measurements
were repeated. The maximal groove depth, still 5.3 ,m,
thus becomes 0.55Ao (instead of 0.5Ao in the previous ex-
periment, where Ao was 10.6 m). This corresponds to
the optimal groove depth for the angular range of -45° <
0 < 45° The results are presented in Fig. 5, together
with the corresponding theoretical results from Fig. 3.
Again, the maximal experimental efficiency was normal-
ized to 100% (here at an angle of incidence of 15°). By
comparing Figs. 4 and 5, it is evident that the experimen-
tal diffraction efficiencies are indeed more uniform over
the range of angles for the grating with the optimal groove

50 depth of 0.55Ao.
Angle of Incidence (degrees)

Fig. 4. Experimental and calculated diffraction efficiencies as a
function of the angle of incidence for a blazed grating with a
groove depth of 0.50A. Curve: scalar calculation; squares: ex-
perimental results.

Now, to maximize E(d) we require that the derivative of
E(d) with respect to d be set to zero, aE(d)/ad = 0. This
yields the optimal groove depth dop,,

AO 4 sin Omax

-2 20max + sin 20max (2

For example, in accordance with Eq. (12), the optimal
groove depth for the range -45° < 0 < 45° is dopt = 0.55Ao;
this value for dopt is 10% larger than the optimal groove
depth for normal incidence (dop, = Ao/2). The diffrac-
tion efficiency as a function of the angle of incidence was
calculated by using Eq. (6) for a grating having the opti-
mal groove depth. The results are shown in Fig. 3, again
along with the results obtained by a rigorous vectorial for-
malism; all the parameters besides the groove depth were
the same as those for Fig. 2. By comparing Figs. 2 and 3
it is evident that, for the grating with the optimal groove
depth, the diffraction efficiencies are more uniform over
the range of angles. Furthermore, according to Eq. (10),
the overall diffraction efficiency for the optimal groove
depth (Fig. 3) is 96o, whereas that for the other groove
depth (Fig. 2) is only 93%.

We performed initial experiments to verify the above
predictions for the diffraction efficiencies. The blazed
reflection grating was recorded as a surface-relief grating
with eight discrete binary steps by using multilevel litho-
graphic techniques.9 The grating was designed to have
maximal efficiency for a wavelength of AO = 10.6 Am (from
a CO2 laser) at a normal incidence (i = 0). Therefore the
groove depth was chosen, according to Eq. (7), to be d =
0.5Ao = 5.3 m. The efficiency of the first diffraction
order -1l for these parameters was measured to be 88%.
This value is 7% lower than the theoretical maximum for
an eight-level phase grating9 ; this reduction in efficiency
is due to inaccuracies in the realization process. Then, rql
was measured at several other angles of incidence. The
results are shown in Fig. 4, together with the correspond-
ing theoretical results from Fig. 2. The experimental dif-
fraction efficiencies were normalized to 100% at normal
incidence to make possible a quantitative comparison with
the theoretical results. As is shown, the experimental re-
duction in diffraction efficiency is in close agreement
with the calculated one.

4. RANGE OF WAVELENGTHS

Let us now consider the relatively simple case in which the
incoming light is oriented at a specific angle. We assume
a normal incidence (0 = 0) and a uniform distribution of
the spectral range Amin < A < Amax (white light). These
assumptions are expressed mathematically by the distri-
bution function having the form

8 (0j) if Amin < A < Amax
0)(0i, A) = 1.0es w re (13)

0 elsewhere

The overall diffraction efficiency of the grating is ob-
tained by incorporating Eq. (13) into Eq. (8) to yield

CA max
E(d) = J a (0j = 0, A, d)dA. (14)

'mi.

Following the same procedure as in Section 3 [i.e.,
Eqs. (10)-(12)], we find the optimal groove depth dopt that
maximizes the overall diffraction efficiency to be

A maxAmin Amax
dopt = 0.5 ln A. (15)

Amax - Amin Amin

It is interesting to compare this choice for the optimal
groove depth with those that would give a diffraction effi-
ciency of 100% for a specific wavelength within the range.
In particular, we compare our choice with those where the
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Fig. 5. Experiniental and calculated diffraction efficiencies as a
function of the angle of incidence for a blazed grating with a
groove depth of 0.55A (optimal depth). Curve: scalar calcula-
tion; squares: experimental results.
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Fig. 6. Calculated diffraction efficiency as a function of the
wavelength (in units of Amin) for a blazed grating with groove
depths chosen in accordance with geometric average, arithmetic
average, and optimal calculations.
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Fig. 7. Groove depths of the blazed grating (in units of Amin) as a
function of Amx/Armin for the arithmetic average, geometric aver-
age, and optimally calculated wavelengths.

specific wavelength is an arithmetic average, (Amin +
Amax)/2 , and where it is a geometric average (AminAmax)1/2.
We calculated the diffraction efficiencies and the optimal
groove depths for each choice. The results are shown in
Figs. 6 and 7. Figure 6 shows the diffraction efficiencies
as a function of A (in units of Amin) for a wavelength range
of Ama,,/Amin = 2. As is shown, the diffraction efficiency
for the optimal groove depth is the most uniform over the
range of wavelengths.

Figure 7 shows the optimal groove depth (in units of
Amin) as a function of the ratio Amax/Amin. As is evident,
the groove depths derived in accordance with the geomet-
ric average are similar to the optimal depths. The groove
depths derived in accordance with the arithmetic average
are considerably different. It can therefore be concluded
that the simple geometric average may be adequate for
relatively moderate spectral ranges.

5. CONCLUSION

We have shown that it is possible to obtain a high diffrac-
tion efficiency with blazed diffraction gratings even when

the incident light contains a broad range of wavelengths
and arrives from a wide range of angles. The high effi-
ciencies are achieved by optimizing the groove depth in
the gratings. The gratings with the optimal groove depth
also have improved uniformity in diffraction efficiency
over the range of incidence angles and wavelengths, a
property that may be advantageous in many applications.

Finally, our optimization approach can be readily gen-
eralized to include higher diffraction orders and thick
gratings for which the period is of the same order of mag-
nitude as the wavelengths. However, the scalar theory
may no longer be valid, so the diffraction efficiencies must
be calculated by the rigorous vectorial approach.8 In such
a rigorous approach the optimal groove depth could be
found by numerical rather than by analytic techniques.
Moreover, the small facet may no longer be vertical to the
grating plane, as for the thin grating, so its angle must be
optimized as well.

Throughout the paper we assumed that the groove shape
is triangular (blazed) and considered the effects of its
depth. It is possible that different groove shapes would
result in higher diffraction efficiencies over a broad range
of wavelengths and incidence angles. We considered bi-
nary, sinusoidal, and parabolic groove shapes, but these
resulted in lower diffraction efficiencies than were ob-
tained with the blazed gratings. Nevertheless, so far we
have not been able to prove rigorously that the blazed
groove shape is indeed optimal in this respect.

We conclude by noting that alternative approaches may
be considered when one deals with blazed holographic
gratings that are illuminated with nonlaser light. For ex-
ample, it is possible to require maximal uniformity of
the diffraction efficiency within the spectral and angular
range, rather than maximal total efficiency as we re-
quired. This would lead to some modifications in the
mathematical derivations, but the general formalism
would be similar.
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