
Reflective and refractive systems
for general two-dimensional beam transformations
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A method for designing reflective and refractive surfaces that perform general transformations on
two-dimensional beams is presented. In some cases the shape of the surfaces is represented by a simple
integral of an analytic expression, whereas in other specific cases it is represented as a solution of a
Poisson-like equation. Finally, the possible use of noncontinuous surfaces (facets) is discussed and
evaluated quantitatively. Some of the novel techniques developed are also applicable for beam
transformations that are realized with diffractive systems.

1. Introduction

Optical beam transformations are often necessary for
wave-front shaping'- and optical processing5- 1' appli-
cations. In principle the transformations may be
realized with reflective, refractive, or diffractive optics.
So far, most of the research in this field has concen-
trated on diffractive (holographic) optical tech-
niques312 because of the relative ease in which
aspheric phases can be realized with computer-
generated holograms.13 However, the needed diffrac-
tive elements must usually be used with either mono-
chromatic or quasi-monochromatic radiation, and
they may suffer from low diffraction efficiencies.
Moreover, uhless one uses expensive electron-beam
plotters for recording the computer-generated holo-
grams, the minimal possible grating period is typi-
cally much larger than the wavelength; the large
attainable grating period leads to relatively low diffrac-
tion angles, and the resulting optical system is quite
large.

For more compact, polychromatic radiation and
high-efficiency beam transformations, reflecting or
refracting surfaces may be exploited. The recent
improvement in the technology for fabricating
aspheric surfaces, especially with plastic-molding and
diamond-turning techniques, offers the possibility of
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forming aspheric optical surfaces with high optical
quality. Still, it is necessary to design the aspheric
shape of the surfaces. Some designs for both reflect-
ing' and refracting2 surfaces have been reported, but
they were suitable only for transformations of one-
dimensional beams (or, equivalently, beams with
circular symmetry). For the general two-dimen-
sional case, no design method for the surface shape
has been presented yet to our knowledge.

In this paper we report on a method for designing
reflective and refractive surfaces that perform gen-
eral transformations on two-dimensional beams.
We begin by presenting the basic relations for the
shape of the aspheric surfaces in terms of partial
differential equations. Then, we discuss the exis-
tence and the intergrability of the solution of these
equations, and we present an approximate solution
that is always continuous. Finally, the possible use
of noncontinuous surfaces (facets) is discussed and
evaluated quantitatively.

2. Basic Relations

Let us consider a general transformation between an
input and an output beam, both with a uniform
phase. These are two types of such a transformation.
The first is a transformation on the intensities

Iin(X, y)- Iout(x, y) (1)

where Iin(x, y) represents the intensity at the input
and Iout(x, y) represents that at the output. An ex-
ample for this type of transformation could be a
Gaussian-to-rect transformation. The second is a
transformation between the coordinates of the rays:"

(2)
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where [x, y] are the coordinates of the input rays and
[x', y'] are those of the output rays. The second type
of transformation is used extensively in applications
of image processing (e.g., the Mellin transform9 ).
These two types of transformation are connected
through the following relation:

the first surface) are, respectively,

Kin = (0, 0, 1),

J(x, y, x', y') = I.ut/Iin, (3)

where J(x, y, x', y') is the Jacobian of the coordinate
transformation. Therefore in the paper we exploit
the notation of the second type of transformation,
which is more general (several different coordinate
transformations may generate the same intensity
transformation).

A. Reflective Surfaces

The reflective optical arrangement for performing a
general coordinate transformation on a two-dimen-
sional beam is presented in Fig. 1. It contains two
mirrors, whose reflecting surfaces can be described by
z(x,y) and z'(x',y'). As shown, a typical input ray
incident in the z direction with coordinates [x, y]
reflects from the two surfaces and emerges again
in the z direction but with new coordinates
[x'(x, y), y'(x, y)]. Since we require that the phases
across the input and output beams be uniform, the
optical path of all the rays between two reference
planes, say z = 0 and z = a, must be constant. This
requirement may be expressed as

a + z' -z + r = c,

According to Snell's reflection law, the vector normal
to the surface at the point (x, y, z) is

x'-X Y -Y Zz -)Km = Kin -Kint =~ ) r ~ ' r 1 ) (7)

In order to determine the shape of the surface, we
must find (z)/(ax) and (z)/(dy). To find (z)/(ax),
we look for a vector in the xz plane (K1,x, 0, K,,,) that is
perpendicular to Km. This requires that the scalar
product be zero:

(8)(Komx, K.Y, K) (K,,, 0, K) = .

Combining Eqs. (7) and (8), we get

az - K. x' -x
ax K Kz ' - z + r (9)

and in a similar way,

az y'-y
a= - z'-
ay z' - z + r(4)

(10)

Finally, incorporating Eq. (4) yields

r = [(x - x')2 + (y - y')2 + (Z - Z)211/2

and c is a constant.
To find the shape of the two reflective surfaces, we

exploit the analytic ray-tracing approach.'4 The
propagation vectors (normalized) of the input ray Kin
and the intermediate ray Kint (the ray reflected from

OUTPUT RAY
(X, Y')

Z. INPUT RAY
(X, Y)

Fig. 1. Reflective optical arrangement for performing a general
coordinate transformation (x, y) (x', y') on a two-dimensional
beam.

az x'-x az y'-y

dx c' day c'
(11)

where c' = c - a is a constant. Note that Eq. (11) is
identical to the surface equation of the one-dimen-
sional case, given in Ref. 1, with only a slight differ-
ence in the constant c'. The shape of the second
reflective surface is readily found from Eq. (11) and
the requirement that the input and output rays are
parallel; i.e., the slopes at the corresponding points on
the two surfaces are the same:

az' az az' az

ax' ax ' y, ay
(12)

B. Refractive Surfaces

The refractive optical arrangement for performing a
general coordinate transformation on a two-dimen-
sional beam is presented in Fig. 2. It consists of a
bulk substrate with an index of refraction n > 1,
whose front and back refractive surfaces are depicted
byz(x, y) and z'(x, y). To find the shapes of these two
surfaces, we follow a similar procedure to that for the
reflecting surfaces. Here, however, the requirement
for uniform phases in the input and the output beams
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Kint = X, y' y z' z)

(5)

(6)

where



and (16) also reduce to

az n(x' - x)
ax {C2 - (n2 - )[(X' - X)2 + (y' y)2]-1/2

az n(y' - y)
y= {c2 - (n2 - 1)[(x' - x)2 + (y' y)2- 1 /

(17)

(18)

Note that in the one-dimensional case (y' = y), Eq.
(17) reduces to

az n

ax f[c/(x' - x)]2 - n2 + 111/2 (19)

F7zpX
z

INPUT RAY
(X, Y)

Fig. 2. Refractive optical arrangement for performing a general
coordinate transformation (x, y) - (x', y') on a two-dimensional
beam.

has to include the refractive index and is expressed as

a + z' - z + nr = c, (13)

where n = 1 is assumed outside the bulk.
According to Snell's refraction law, the vector

normal to the first refractive surface at the point
(x, y, z) is

K = Kin -n Kint = ( xy Y ' z. zn, r r r~~

where Kin and Kint are the same as in the reflective
case [Eqs. (5) and (6), respectively]. Finally, the
surface derivatives are found by the same procedure
as for Eqs. (7)-(9) to be

az K x' -x

ax K z' -z+r/n
az y, -y

- - _ _ _ _ _ _ _ _ . ~(1 6 )ay z -z + r/n

There is a significant difference between the reflec-
tive and the refractive case. In the reflective case the
denominator on the right side of Eqs. (9) and (10) is
equal to the optical path and, from Eq. (4), is simply a
constant, so the differential equations reduce to
simple equations. On the other hand, in the refrac-
tive case the denominator of the right side of Eqs. (15)
and (16) is not a constant. Nevertheless, by incorpo-
ration of the constant optical path requirement [Eq.
(13)] and after some algebraic manipulation, Eqs. (15)

which is identical to the one-dimensional slope equa-
tion that is given in Ref. 2. Finally, the shape of the
second refractive surface is found, as in the reflective
case, by Eq. (12).

3. Integrability

The realization of general coordinate transforma-
tions with diffractive systems has been extensively
investigated.3 -'2 Fortunately Eq. (11) for the shape
of the reflective surfaces is exactly identical to the
equation for the phase functions for the diffractive
elements in paraxial beam-transformation systems5

[although Eq. (11) itself is certainly not paraxial].
Therefore it is possible to exploit here some results
that were derived earlier for diffractive systems (later
in the paper derive some new results concerning
noncontinuous surfaces that can be exploited for
beam transformations with diffractive elements).
The equations for the surfaces shape in the refractive
case are more complicated and cannot be adapted
directly. Nevertheless, the same basic approaches
may be applied also to them, with some minor
modifications.

To begin, we rewrite Eq. (11) in vectorial notation
as

Vz = Kd, (20)

where

/' - y - yAKd ( '- Cx ' 

is the desired derivative vector and V = (a/ax, a/ay) is
the gradient operator. A unique solution to Eq. (11)
exists only for transformations in which the deriva-
tive vector is a conserving vector,'4 i.e., if

V x Kd = 0, (21)

where V x is the curl operator. For the reflective
system, Eq. (21) reduces to

ax' ayl

ay ax
(22)
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This condition ensures that integration of Eq. (11)
along any path in the xy plane yields an identical
result. For example, using the (0, 0) -. (x, 0) - (x, y)
path leads to the expression

z(xy) = [lo[x'(t,y = 0)dt + y'(x, t)dt - (X2 + y2)/2

(23)

and to a similar expression for z'(x', y').
A common example in which such a procedure is

applicable is the n r - 0 coordinate transformation 9

(which is used for scale and rotation invariance in
optical correlators), given as

x'(x, y) = ln(x2 + y2 )1/2 ,

y'(x, y) = -tan-'(y/x). (24)

Incorporating Eq. (24) into Eq. (23) and integrating
yields the desired surface shape as

z(x, y) = [x ln(x2 + y2 )1/2 - y tan-'(y/x)

- x - (X2 + y2)/2]/c', (25)

and, it yields a similar expression for z'(x', y').
For transformations in which the requirement of

Eq. (22) is not fulfilled there is no unique solution for
the reflective surface shape. There are several ap-
proaches to overcome this difficulty. First, it has
been shown'2 that any nonintegrable transformation
(x, y) - (x', y') may be divided into two stages (x, y) ->
(x", y") - (x', y'), in which each stage is now inte-
grable, i.e., fulfills the requirement of Eq. (22).
Note, however, that this solution involves a doubling
of the optical system, and therefore it requires four
surfaces instead of two.

A second approach for nonintegrable transforma-
tions, again adopted from diffractive systems," is to
find an optimal surface zop(x, y) in the sense that its
partial derivatives are closest to the desired ones of
Eq. (11). Specifically, if the 12 metric in the Hilbert
space of two-dimensional functions is exploited, one
may find the optimal surface by solving a Poisson-like
equation":

V 2 Z0 P ax, + ay- 2) (26)

where V2 = (a2/ax2 ) + (a2/ay2 ) is the Laplacian
operator. This equation can be solved numerically
by standard computer programs when (a) the proper
boundary conditions are (z)/(an) = [n(x' - x, y -
y)]c' on the boundary of the surface, with n as a unit
vector normal to the boundary in the xy plane, and (b)
when the constant of integration can be arbitrarily
chosen.

Although the procedure that leads to Eq. (26)
ensures the best continuous solution for the surface
function zop(x, y), it can still yield considerable distor-
tions in cases of a highly nonconserving derivative

vector. In such cases it may be advantageous to
permit some discontinuities in the surface shape or
derivatives. A quantitative description of these dis-
continuities is presented in Section 4.

4. Noncontinuous Surfaces

The simplest way to include discontinuities in the
surface shape is to divide it into small planar facets,
whose angles are chosen to satisfy Eq. (11) for a
certain point within each facet. This is known as
the integration mirror, or multifacet, approach.'0
Unfortunately, in general, Eq. (11) can be adequately
fulfilled only for a single point within each planar
facet, whereas for the other points, severe aberra-
tions exist. In order to minimize these aberrations,
one must reduce the size of each facet. This reduc-
tion in size of facets leads to a large number of facets
and thereby to high diffraction effects from the many
discontinuities between the facets, so the overall
optical performance remains relatively poor. Specifi-
cally, by adapting the results from diffractive beam-
transformation systems,' 0 "' one can readily show
that the optimal facet size is approximately vXJ and
that the total distortion (aberration plus diffraction)
is approximately 2a, where is the wavelength of
the light and c is the optical path.

In order to improve the optical performance, one
can exploit nonplanar facets, the shape of each facet is
obtained by use of the optimization procedure of
Section 3 [Eq. (26)]. Here, the optimized shape of
the facet is much closer to the desired shape described
by Eq. (11), so the number of facets and hence the
diffraction from the discontinuities between them
may be reduced considerably.

For a quantitative analysis of the optical perfor-
mance and for determination of the optimal facet size,
we limit ourselves again to the simpler case of reflec-
tive surfaces. We begin by characterizing the amount
of nonintegrability of the transformation with a
dimensionless constant R, defined as

R = maximum{V c'Kd I = maximum| ax -ay

(27)

For an integrable transformation, for which Eq. (22)
is fulfilled, the amount of nonintegrability is indeed
R = 0. However, for nonintegrable transformation
(R • 0), the integration of Eq. (11) along different
paths in the xy plane yields different surface shapes
z(x,y), instead of a unique one as for integrable
transformations. The error in the reflecting surface
shape 8z that is caused by the nonintegrability may
thus be estimated by these differences in shape to
yield

8z Kddl, (28)

where represents a closed orbital integral within
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the facet. By exploiting Green's theorem we can
simplify relation (28) to

z j'(v Kd)ds < Jj(R/c')ds R f) (29)

where the double integral is on the area contained
within the closed orbit, approximated by the total
area of the facet (Xf)2, with Xf a typical size of the
facet.

Now the angular aberrations of the facet shape may
be estimated by

8z RXf
sad X c" (30)

and the corresponding lateral aberrations in the
output plane are

Wab c'8K RXf. (31)

Relation (31) indicates that the approximated lateral
aberrations are proportional to the amount of nonin-
tegrability R and the facet size Xf. For simplicity, no
distinction between c and c' was made in the deriva-
tion; this may result in an error of approximately a
factor of 2 in the aberrations. On the other hand,
the diffraction effects in the output are inversely
proportional to the facet size and may be approxi-
mated by

XC
Wdiff Xf' (32)

where X is the wavelength of the light. The com-
bined effect of the aberrations and diffraction may be
crudely approximated by their sum as

Wtot = Wdiff + Wab- (33)

To estimate the optimal facet size Xfopt for which
Wtot is minimal, we take the derivative of Wt~t with
respect to Xf and set it to zero, which yields

XC 1/2

Xf'opt~ R X(34)

where some constants, of the order of 1, were omitted
all along the derivation. Relation (34) indicates that
the optimal facet size increases for transformations
with a higher amount of integrability (smaller R), as
may indeed be expected. For the optimal facet size
the total distortion of the transformation (aberration
plus diffraction) is

Wtt = 2(XcR )1/2. (35)

By comparison of the results of relations (34) and (35)

to those from the earlier multifacet approach,'0 two
main conclusions emerge:

(1) The size of the optimal facet Xf,0 pt is 1/X1
times larger here than that for the multifacet ap-
proach. The area of the optimal facet Xf is there-
fore 1/R times larger than that for the multifacet
approach, and the number of facets is 1/R times
smaller.

(2) The total distortion in each spatial direction
is 1/VK times smaller here than for the multifacet
approach, so the two-dimensional space-bandwidth
product is 1/R times larger. Consequently a substan-
tial improvement is obtained for transformations
with a low amount of nonintegrability (R << 1).

5. Concluding Remarks

A method for designing reflective and refractive sur-
faces that perform general transformations on two-
dimensional beams has been presented. The basic
relations for the shape of the needed aspheric sur-
faces were derived in terms of partial differential
equations with an explicit form. The explicit form of
these equations may be attributed to the restriction
that the input and the output beams are collimated
(constant optical path for all rays). For noncolli-
mated input or output beams the partial differential
equations for the surface shapes would have an
implicit form and are much more difficult to solve.
Even for the explicit form there are cases in which the
equations for the surface shape do not have a continu-
ous solution. For these cases we derived a formal-
ism (adapted from diffractive optics) to obtain an
optimal shape that would minimize the optical aber-
rations as a solution of a Poisson-like equation.
Finally, we analyzed the optical performances of
noncontinuous surfaces (facets), and we found the
optimal facet size as a function of the amount of
nonintegrability of the beam transformation.
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