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Curved holographic elements for optical coordinate
transformations
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A new method for performing optical coordinate transformation is presented. It is based on a curved holo-
graphic element on which the interference pattern of two perpendicular plane waves is recorded. The design
procedures and results for two curved elements that perform a one-dimensional logarithmic coordinate trans-
formation and a Gaussian-to-uniform-beam conversion are given.

Space-variant coordinate transformations (CT's) on
two-dimensional pictures have many applications in
optical data processing.' One approach for obtain-
ing such CT's exploits reflective2 or refracting 3 as-
pheric surfaces. The main difficulty in this
approach is its high sensitivity to the accuracy of
the aspheric surfaces. Specifically, small devia-
tions of the local slope of the surface may cause
severe aberrations in the transformation.

A more common approach for obtaining optical
CT's involves planar holographic elements with com-
plicated aspheric phase functions.4'5 As a result,
the holographic elements must be recorded as com-
puter-generated holograms. Unfortunately, with
the possible exception of e-beam plotters, all plotters
that are used to record computer-generated holo-
grams have either limited resolution or a low space-
bandwidth product. These limitations of the
plotters directly affect the compactness and the
space-bandwidth product capabilities of the optical
system that performs the CT.6

In this Letter we present a different approach for
obtaining CT's, which involves curved holographic
elements. Here the curvature provides an addi-
tional degree of freedom that enables us to exploit
holographic elements with simple phase functions
that can be recorded directly by optical means.
The design method for such curved holographic ele-
ments is described, and it is then illustrated for two
specific cases: a logarithmic coordinate transfor-
mation and a conversion of a Gaussian beam into a
uniform one.

Consider a coordinate transformation for a one-
dimensional function f(x),

f(X) - f[U(x)], (1)

where u(x) is the new coordinate. Such a transfor-
mation is illustrated graphically with the aid of
Fig. 1, where the input function f(x) is drawn along
the x axis and the output function f [u(x)] is drawn
along the z axis (for simplicity we use a binary func-
tion). From each point xi on the x axis, a vertical
line is drawn, and from its intersection with the
curve z = u(x) a horizontal line is drawn that inter-
sects the z axis at the point zi = u(xi).

The transformation of Fig. 1 may be realized di-
rectly by optical means as shown schematically in
Fig. 2. A transparency with transmittance func-
tion f(x) at the input plane is illuminated by a coher-
ent plane wave. If we assume no diffraction of this
plane wave by the input pattern (geometrical
shadow approximation7 ), the wave front after the
transparency can still be described by parallel rays,
where the intensity of each ray is f(x) and x is the
coordinate of the ray. These parallel rays are dif-
fracted by a holographic element along the curve
z = u(x) by exactly 900 and hence arrive at the out-
put plane at the desired location z = u(x). The
curved holographic element may be generated opti-
cally by simply recording the interference pattern of
two perpendicular plane waves on a curved record-
ing film. Note that the geometrical shadow ap-
proximation is valid when the distance between the
input and the output planes is small compared with
A-i'f;, where fmax is the maximal spatial frequency
of the input.6

The curved hologram approach may be generalized
for data with two spatial dimensions. Quasi-one-
dimensional CT's of the form [x, y] -- [u(x, y), y]
can be achieved with the same configuration as for
the one-dimensional case, except that now the
curved holographic element is located on a surface
z = u(x,y). A general two-dimensional CT of the
form [x, y] - [u(x, y), v(x, y)], on the other hand, re-
quires two cascaded curved holograms. The first
generates the CT [x, y] -> [u(x, y), y] as discussed
above, while the second generates the CT [u(x, y),
y] - [u(x, y), w(u, y)], where w(u, y) = v(x, y).

A sufficient and necessary condition for the valid-
ity of the curved hologram approach is that the CT
must be monotonic, as can be seen directly from
Fig. 2. For the one-dimensional case this condition
can be expressed as du/dx • 0, and for the two-
dimensional case it can be expressed as J • 0,
where J is the Jacobian of the transformation.

To evaluate the performance of the curved holo-
gram approach, we performed an experiment for a
one-dimensional logarithmic transformation
[x, y] -> [ln(x), y]. The optical arrangement for
recording the holographic element is shown in
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Fig. 1. Graphical illustration
R(X) - A(x)I

of a one-dimensional CT

For readout, we exploited the same arrangement
of Fig. 3 except that one arm was blocked. The de-
veloped film was returned to its original location on
the logarithmic surface, and a transparency, con-
taining a 50 mm x 80 mm input scene composed
from black and transparent lines whose width
formed a geometric series, was inserted in the un-
blocked arm. The diffracted light along the path of
the blocked arm formed the transformed output.
The results of the logarithmic CT are shown in
Fig. 4. The input is shown in Fig. 4(a), and the cor-
responding transformed output is shown in Fig. 4(b).
As expected from a logarithmic transformation, the
output in this case is composed of lines that have the

output plane
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element
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Fig. 2. Optical configuration for fabricating a
dimensional CT using a curved holographic element.

Fig. 3. Optical arrangement for recording the curved
holographic element. BS, beam splitter; M's, mirrors; Li
and L2, lenses forming a telescope; H, curved holographic
film.

Fig. 3. A laser beam derived from an argon laser is
divided by a beam splitter to obtain two beams that
are reflected and expanded to form two perpendicu-
lar plane waves. The holographic element was
recorded on Agfa 8E56 film that was attached to a
logarithmic-shaped surface and located in the overlap
volume between the two plane waves; the logarithmic
sloping was formed by a computer-controlled lathe.

(a) I (b)g

Fig. 4. Experimental results of the one-dimensional
logarithmic CT: (a) input, (b) output.
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Fig. 5. Experimental intensity cross section for the input
and output of the Gaussian-to-uniform-beam conver-
sion: (a) input, (b) output.
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same width. The measured distortions of the out-
put were relatively low, less than 0.2 mm, and are
probably due to mechanical distortion of the record-
ing film.

We also tested the curved hologram approach to
transform a Gaussian beam into one that is uniform
in one of the dimensions. Specifically, the input
Gaussian beam had an intensity cross section of
Ii.(x, y) = Io exp[(x2 + y2 )/ro2], whereas the output
beam was uniform in the x direction, i.e., I0ut(x, y) oc
exp(y 2 /r02 ). Such a conversion may be obtained by
the following CT (Ref. 8):

[x, y] - [erf(\/_x/ro), y], (2)

where erf is the error function (the integral of the
Gaussian function). The same procedure was used
for recording the curved holographic element as for
the logarithmic transformation described above, ex-
cept that now the shape of the recording surface was
that of an error function. The transformation re-
sults for an input Gaussian beam with ro = 17 mm
are shown in Fig. 5. The input with its Gaussian
shape is shown in Fig. 5(a), whereas the transformed
output is depicted in Fig. 5(b). The intensities of
the input and output beams were measured by a
scanning-knife method,9 so the y dependence was
automatically integrated. As can be seen, the out-
put intensity is indeed uniform in the x direction, up
to -20% accuracy. The deviations may be at-
tributed to mechanical distortion of the recording
film or to changes in the diffraction efficiency of the
holographic grating at different areas on the film.

In conclusion, a new method for performing opti-
cal coordinate transformation on two-dimensional
data was presented. It is based on a curved holo-
graphic element that is recorded optically in a rela-
tively simple way. Therefore, computer-controlled
plotters with extremely high resolution are not
needed. Furthermore the curved holographic ele-
ment diffracts the light by an angle of 90,. a much
larger diffraction angle than most planar computer-
generated holograms are capable of. Thus, for a
given input size, the distance between the input and
output planes will be much smaller for the curved

hologram than for the planar one. Besides making
the total optical system more compact, this shorter
distance improves considerably the optical per-
formance of the CT. Specifically, the space-
bandwidth product capabilities of the transformation
are inversely proportional to the square root of this
distance.'
*The curved holographic element has another ad-

vantage over the planar one in those cases where the
phase of the output wave front is required to be uni-
form (a collimated beam). In the planar approach
another element is required to collimate the beam,
whereas in the curved element approach the beam is
inherently collimated in the output plane.

To illustrate the validity of our approach, two
curved holographic elements for performing a one-
dimensional logarithmic CT and a Gaussian-to-uni-
form-beam conversion were designed, fabricated,
and tested experimentally. In both cases the ele-
ments were curved in one dimension only, so it was
possible to attach a conventional holographic film to
the curved surfaces. For more general transforma-
tions, where the elements are curved in two dimen-
sions, it will be necessary to coat the curved
surfaces directly with recording materials; for ex-
ample, by dip-coating technology.
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