
Optical coordinate transformations
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A novel technique for designing holographic optical elements that can perform general types of coordinate
transformation is presented. The design is based on analytic ray-tracing techniques for finding the grating
vector of the element, from which the holographic grating function is obtained as a solution of a
Poissonlike equation. The grating function can be formed either as a computer-generated or as a
computer-originated hologram. The design and realization procedure are illustrated for a specific
holographic element that performs a logarithmic coordinate transformation on two-dimensional patterns.

Introduction

The design and use of holographic optical elements
(HOE's) to perform coordinate transformations were
first suggested by Bryngdahl.' Transformations with
HOE's were exploited for distortion compensation,2
for angle multiplexing in optical fibers,3 and for
optical data processing.4'5 The design of HOE's for
these transformations is based on two approxima-
tions: the saddle-point approximation and the parax-
ial approximation. These approximations impose con-
tradicting requirements on the distance between the
input and the output planes. The saddle-point approx-
imation calls for a short distance compared to the
lateral dimensions, whereas the paraxial approxima-
tion requires the distance to be much longer. Such
contradicting requirements impose severe limitations
on the space-bandwidth product (SBP) of the data
that may be transformed without degradations.6 Fur-
thermore, these design procedures were suitable only
for certain types of transformation.6 For more general
transformations, faceted HOE's with even lower SBP
capabilities7 or complex optical systems containing
two HOE's in cascade8 have been suggested.

In this paper we present a new procedure for
designing HOE's without the need for paraxial approx-
imation. In this procedure, analytic ray-tracing tech-
niques are first exploited to determine the necessary
grating vector, from which the optimal grating func-
tion for forming the HOE's is derived by variational
methods. With such grating functions, the SBP of the
data that can be transformed is significantly im-
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proved, and the coordinate transformation need not
be limited to a specific type. Furthermore, the Fourier
transform lenses that were included in the earlier
designs need no longer be added.

In the following we show how to obtain both the
grating vector and the grating function of the HOE
and how to evaluate the SBP capabilities of the
coordinate transformations. Finally, the procedure is
illustrated by designing and testing a HOE for two-
dimensional logarithmic transformation. Such a trans-
formation is useful for scale-invariant optical correla-
tors. 6

Design of the Holographic Grating Vector

An optical arrangement for realizing a general two-
dimensional coordinate transformation (x, y) -- [u(x,
y), v(x, y)] is shown in Fig. 1. The input object, a
transparency or a spatial light modulator with an
amplitude transmission function of t(x, y), is placed
adjacent to a HOE having a grating function of 'h(x,
y), and illuminated by a coherent plane wave. The
desired coordinate transformation T(u, v) is obtained
at some distance z away. To find the necessary grating
function for the HOE, it is most convenient to find its
grating vector first.9 This is best done by exploiting
the propagation vectors of the input and output wave
fronts. 9

The normalized propagation vectors, which can be
regarded as the direction cosines of the input (K) and
output (K) rays, can be written as

X X
(1)

and the grating vector Kh, as

Kh = 2Vk = K + KY= Kx+ y Y' (2)
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Fig. 1. Coordinate transformation arrangement with a HOE.

where V is the gradient operator, id and LO, are the
phases of the input and output wave fronts, respec-
tively, is the wavelength of light, and Ax and Ay are
the grating periods in the x and y directions. The
diffraction relation for the first diffraction order of
the HOE can now be written as

(6)

and Kh = (X/20rr)(h is the normalized grating function,
k = 2/X is the wave number, zlr 2 is the inclination
factor," and an on-axis incoming wave (i = 0) was
assumed. For typical optical wavelengths k is large
and the integral can be fairly well approximated by
using the standard saddle-point method," which spec-
ifies that the main contribution to the integral is
provided from the saddle points of the phase function
h(x, y), for which

K.. = K, + Kh,,
K. = KC + Kay,

K". = (1 - K 2 _ K 2
)1/

2 (3)

The HOE can thus be viewed as a combination of local
gratings that change the direction of the incident rays
of light according to Eqs. (3).

We proceed by assuming that diffraction by the
input pattern can be neglected; this assumption can
be shown to hold true when the distance between the
input and the output planes is small compared to
?C'fm0. 2, where fOm is the maximal spatial frequency of
the input.'0 Thus, a ray of light traversing from the
point (x, y, z = 0) on the HOE to the output plane at
the coordinates (, v, z) should have the propagation
vectors

K(x, y) =u(x,y) -xr

) (x,y) -y (4)

where

r = [u(x, y) -] 2 + [U(x, y) - y]2 + 2 .

Assuming an incident input plane wave at an off-axis
angle a, in thex-z plane [i.e., K,. = sin(a) and Kn = 0]
and inserting Eqs. (4) into Eq9. (3) yield the desired
grating vectors:

u(x,y)-x
Kh(XIY) = r i - ,)

K,(x, y) = (x,y)-Y (5)
r

Equations (5) can also be derived in terms of wave
optics. The light amplitude in the output plane of the
optical arrangement shown in Fig. can be written by

oh Ah
Ox y (7)

Applying these relations to Eqs. (6) yields the follow-
ing conditions on the holographic grating vector:

04 ar u(x,) - x
K,,(xy) O ax ax r

0h Or v(x, y) - yKI,(xy) = y = r (8)

This condition ensures that the main energy contribu-
tion to the point (u, v) in the output plane comes from
the point (x, y) in the input plane, having the grating
vector Kh of Eqs. (5) as derived by means of geometri-
cal optics. I

The light amplitude in the output plane within the
saddle-point approximation is given by"

T(u, v, z) t(x,, Y,)expjif kh(x,, y,) + 

x (h±,h~, - h0 ,2)-1/2 Z
X (hh~,y - h Y r(x., y8)

2 (9)

where (x,, y) is the saddle point for which Eq. (7) is
fulfilled, and the notation h = 2hIax2, etc. is used.
This expression is indeed the desired coordinate
transformation t(x, y) T[u(x, y), v(x, y)] provided
that Eqs. (8) are fulfilled, but the transformed func-
tion is multiplied by a phase function and an ampli-
tude function. The phase function expji[kh(x, y) +
(7r/4)]1 can be corrected, if needed, by a second HOE.
However, in many cases the output plane is detected
by a square-law detector, and the phase term is not
important. The amplitude term, (h,,h. - h 2 )-"2z1r2 ,
can be discarded by an appropriate amplitude mask
either in the input or in the output planes (it is
possible also to incorporate the amplitude mask and
the phase mask into a single HOE). Note that, for the
paraxial case, this amplitude term converges to the
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Jacobian of the transformation and expresses the fact
that energy is conserved by the transformation.

Holographic Grating Function

The grating function +(x, y) can be found, in general,
by exploiting the relation

2ir
V4,h(x, y) = K&x Y).

A
(10)

For one-dimensional elements, the grating function is
given by

4,h(x) = A fK,,(x')dx', (11)
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F(uv)

Fig. 2. Optical arrangement for separable 2-D coordinate transfor-
mations. The first HOE performs the x-coordinate transformation
and the second HOE performs they-coordinate transformation.

where the constant of integration can be chosen
arbitrarily. For two-dimensional elements (the 2-D
case), a unique solution is possible if the following
condition is fulfilled:

OKh,(x, y) Kh (x,Y) (12)

ay ax

A vector that fulfills this condition is known as a
conserving vector.

Let us examine some special cases where the
condition of Eq. (12) is fulfilled. When the desired
coordinate transformation has circular symmetry,
i.e., p is transformed to w(p), where p = (X

2
+ y

2
)1/2,

the 2-D situation is essentially comparable to the
one-dimensional case after exchanging x with p, so
the grating function can be found as in Eq. (11).
Alternatively, when the coordinate transformation is
separable, i.e., (x, y) is transformed to [u(x), v(y)], the
paraxial approximation can be exploited to replace r
by z in Eq. (5), yielding a grating vector of the form
K, (x)X + Kh (y) , thereby fulfilling the condition of
Eq. (12). The grating function is thus

tion that fulfills Eq. (10). For this case we try to
determine the best grating function , in the sense
that its gradient is closest to the desired grating
vector (Kh , Kh) of Eqs. (5). Specifically, we use 12

metric in the Hilbert space of 2-D functions and
minimize the following functional of h(x, y):

L[k,(x, Y)] = fA f dxdy ( ax- _Af

+ ,r (da -A )] (15)

where the integration is over the area A of the HOE.
The minimization is performed by solving the Leg-
endre equation:

= 0, (16)

where 8 indicates a functional derivative.
Now the functional is of the form

L = f f dxdy [F (x, Y, h h Oh) (17)

4'W(x Y) = A f Kh(x')dx' + Af Khy(y)dy'. (13)

When the paraxial approximation is not valid, it is
still possible to get an analytic grating function by
obtaining the transformation in two stages as shown
in Fig. 2. In the first stage (x, y) is transformed to
[u(x), y ], so the grating vector is only x dependent and
Eq. (12) is valid. In the second stage [u(x), y] is
transformed to [u(x), v(y)] and the grating vector has
the form

Kh = Kh,,(x) + Khy(Y)S,

Consequently, Eq. (16) can be expressed as a Euler
equation'2 :

F 8 BF 8 O 0
8+h ax (da/dX) by 8(daY)

(18)

Incorporating the specific functional L from Eq. (15)
into Eqs. (17) and (18) yields the Poissonlike relation

2 div(K), (19)

(14)

where Kh (X) is the negative of the grating vector of
the first stage. This grating vector fulfills the condi-
tion of Eq. (12), and the grating function can be
obtained by Eq. (13). This decomposition approach
may also be applied to some nonseparable coordinate
transformations. 8

In the general case when the grating vector is not a
conserving vector, there is no analytical grating func-

where V2 = (a
2IaX2

) + (a
2Iay2

) and div are the
Laplacian and divergence operators, respectively. Sub-
stituting the general transformation (x, y) -> (u, v) for
Kh from Eq. (5) into Eq. (19) yields

2'rr Ou 1) [z2+ (v _ y)2] + ( - 1 [Z2 + (U X)2]
'i I(Ox y

Au 
- (a- X) ( -y~y (20)

10 March 1992 / Vol. 31, No. 8 / APPLIED OPTICS 1069



This equation can be solved numerically by using
standard computer programs where (a) the proper
boundary conditions are a8h/an = Kh on the bound-
ary of the HOE with n as a unit vector normal to the
boundary, and (b) the constant of integration can be
arbitrarily chosen. Note, for geometries in which the
paraxial approximation is valid, Eq. (20) can be
simplified to yield

V(+ = 2'rr u + u _ 
Kz \Oax y

(21)

Space-Bandwidth Product Considerations

The performance criteria of the HOE for coordinate
transformations can be characterized by the maximal
SBP of the input that can be transformed without
severe distortions (SBP,,). For simplicity we deter-
mine the SBPCI for the one-dimensional case (for two
dimensions, the SBP of the one-dimensional case
should be squared). In our derivation, we consider
only diffraction effects. Other effects, such as those
caused by the difference between Vck and a noncon-
serving grating vector, should be addressed sepa-
rately for any specific transformation.

For the paraxial case (i.e., where the distance z is
much larger than the input size), the minimal pixel
size possible, p, can be determined by the geometric
shadow condition z p2 where is the wavelength
and z is the distance between the input and output
planes.' 0 Using this relation, for coordinate transfor-
mations we can write

p
I

INPUT
PLANE

z
OUTI
PLAIN

. X

A

U(X)

DUT
JE

Fig. 3. Geometry of the coordinate transformation with high
inclination angles.

wherep is the width of the aperture, r = (A2 + Z2)" is
the slant distance with the lateral shift A = u(x) - x,
and the 1/cos2 a term is due to the projection of the
input and output planes on the plane vertical to the
beam propagating direction with a = tan-'(A/z) as the
inclination angle. [Note that in the paraxial case Eq.
(23) simplifies to the well-known Xzlp diffraction
widening.] For a given A, the least diffraction widen-
ing is obtained at a distance zopt for which / az = 0.
This yields

zpt= V2A. (24)

Equation (24) implies that, for coordinate transforma-
tion, SBPCt will be maximized when the distance
between the input and the output planes, z, is equal to
1.41Amam, where Am. is the maximal lateral displace-
ment. Using this conclusion yields

SBPC* = S ~ m g
P XZ ~xFi~ (22)

where D is the total width of the input, F# = zID, and
SBPimag is the diffraction-limited SBP of an aberration-
free imaging system having the same F. Equation
(22) indicates that the SBP of the coordinate transfor-
mation system (SBP,,) is comparable to the square
root of the SBP for an ideal imaging system (SBPimag).
This conclusion is in agreement with the fact that the
number of degrees of freedom for space-variant oper-
ators is the square of the number of degrees of
freedom for space-invariant operators.'3 It is worth-
while noting that Eq. (22) is also valid for the
coordinate transformation HOE's that were origi-
nally suggested by Bryngdahl,' except that there the
F. refers to a Fourier-transform lens that must be
added. Consequently, to avoid severe aberrations, the
F. must be relatively high.

For the general nonparaxial case (i.e., low F), we
begin by considering a beam incident on a small pixel
aperture of width p, at an inclination angle a, as
shown in Fig. 3, where only the center ray of the
beam, traversing from point x to point u(x), is shown.
The diffraction widening of the beam at the output
plane located at a distance z from the aperture is'4

Xr 1
=- 2

P Cos a
(23)

SBP,,(z = z0p,) ( D2
1/2 ( D 1/2

k1.4-1Am _xJ = \141X'r),I
(25)

where = AmJ/D is a dimensionless number that
characterizes the amount of distortion of the specific
transformation. For the worst case of - = 1 (transfor-
mations with high distortion), SBPCI is only DIX,
which is comparable to using F = 1 in Eq. (22).
However, in many cases ' << 1 (transformations with
low distortion), so SBPCt is greatly increased.

In general, the HOE's for coordinate transforma-
tions are recorded as computer-generated holograms
(CGH's). As a result, the SBPCI is often limited by the
resolving capabilities (or SBP) of the plotters that are
used to record the CGH's. To determine this limita-
tion we begin by expressing the maximal diffraction
angle of the HOE, nab as

am{ = arcsin(X/Amim), (26)

where Amin is the minimal grating spacing limited by
the finite resolution of the plotter. From geometric
considerations (see Fig. 3),

sAm_ s1D
tan(olmx) z z (27)

where the constant s is due to the off-axis linear term
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that must be added to the grating function when it is
necessary to separate the different diffraction orders.
When the HOE is recorded as a kinoform (only one
order is diffracted), there is no need for separation of
orders, so s = 1. When the HOE is recorded directly as
a binary CGH, the different orders must be separated
at the output plane, at a distance z from the HOE, and
s should be taken as s = 1 + (1/,). Finally, when the
HOE is recorded as a computer-originated hologram
(COH),"5 where the linear phase is added by interfer-
ing the wave front that emerges from a CGH with an
off-axis plane wave, the separation of the orders is
done in the Fourier plane, so s = 2.

Combining Eq. (26) and approximation (27) with
s = 2 and using the paraxial approximation of a
sin a tan ac yield

(28)F =2qAm,,,#mu

Substituting approximation (28) into Eq. (22) gives
the final result:

max(SPBc,) (2DAm) = (SBPp.) /2 ' (29)

where SBPP1Ot = D/Amin denotes the SBP of the plotter.
By comparing approximations (25) and (29), it is clear
that, when 2Amin is larger than ,/iA, the practical
limitation on the SBP due to the plotter-limited
resolution is more severe than the theoretical limita-
tion due to diffraction. For most available plotters,
this is indeed the case. Possible exceptions are e-beam
plotters that are capable of submicrometer resolu-
tions, but the size of these plots is generally limited.

Logarithmic Coordinate Transformation

We illustrate our design procedure with a logarithmic
transformation that has the general forms of

be solved directly to obtain an analytic solution for
the grating function as

Y)= AZ [a(x nx - x) + bx - 0.5x2

+ a(y lny -y) + by - O.5y'. (31)

Except for a quadratic phase -(27r/X) (x2 + y2)/2z,
the grating function of Eq. (31) is identical to the one
obtained by Casasent and Psaltis.6 In essence, this
quadratic phase replaces the Fourier lens used in
their system.

To find the optimal grating function without the
paraxial approximation, we proceed by substituting
Eqs. (30) into Eq. (20) yielding

V2+^ =2A 3 (: I- {z2 + [V(y)-y]
2 }

+ -1) {z2+ [U(X) - X]21). (32)

Equation (32) was then solved numerically for an
array of 100 by 100 points in the x-y plane. The
results were then interpolated by quadratic spline
polynomials, yielding a continuous 2-D grating func-
tion.

The optimal grating function can be compared to
the paraxial one by determining the lateral errors in
the output plane that are caused by the deviation of
the actual grating vectors (the gradients of the opti-
mal and paraxial grating functions) from the desired
grating vector of Eq. (5). The results that were
obtained by ray-tracing analysis (thus neglecting the
diffraction from the input data) are presented in Fig.
4. It shows the lateral displacement errors, along the
central vertical line in the output plane (y = 15 mm),
for the optimal and the paraxial grating functions. As
can be seen, the lateral errors are much smaller for
the optimal grating function, thereby proving the
effectiveness of our design procedure. If necessary,

u(x) = a * ln(x) + b,

v(y) = a * ln(y) + b,

2.5

(30)

defined over rectangle inputs (Xmin < < xm. and
Yniin < Y < Ymy), and where a and b are constants
chosen so that U(Xmin) = Xi,,n, U(Xm) = Xm.x V(Ymin) =
Yiin, and V(ym.) = Ymax. This choice of the constants a
and b ensures relatively short lateral displacements
and, thereby, high SBPC*. Specifically, by choosing
Xmin = Ymin = 5 mm and xa,, = y,, = 25 mm, the
maximal lateral displacement is only m. = 5.5 mm,
and thereby q = 0.275. The distance between the
input and output planes, z, was chosen according to
Eq. (24) as Zopt = 8 mm. The theoretical limit on SBPC,
is then found from approximation (25) to be 300 by
300 pixels.

If the paraxial approximation is used, Eq. (21) may

2E 
E

O t.5

W_ 0.5

0

0 5 10 15 20 25 30
X (mm)

Fig. 4. Lateral errors for logarithmic coordinate transformation
for a HOE with an optimal grating function (continuous curve) and
for a HOE with a paraxially approximated grating function (dashed
curve).
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Fig. 5. Experimental results of the 2-D logarithmic geometric
transformation for three different inputs. The inputs are shown on
the left and the corresponding output planes are shown on the
right. The actual size for all is 20 mm by 20 mm.

the lateral errors for the optimal grating function can
be reduced even further by increasing the distance z.
For example, if the distance z is increased to 20 mm
(causing a reduction of 40% in SBct), the lateral
errors decrease by about a factor of 10. This reduction
is due to the fact that the desired grating vector more
nearly approximates a conserving vector for the larger
distance z.

To illustrate our design procedure we recorded a
COH with an optimal grating function to perform
logarithmic coordinate transformations. First, a Lee-
type16 binary mask was plotted with a laser scanner,
having a resolution of -. 18 plm, directly onto photo-
graphic film. The plot was then demagnified optically
by a factor of 10, yielding the desired CGH of 20 mm
by 20 mm, with -'1.8-,um pixel size. By assuming that
the minimal grating spacing contains 4 pixels, then
Amin 7 pum, and for A = 514.5 nm, such a pixel size
dictates, according to approximation (28), that the
distance between the HOE and the output plane is

z = 150 mm. Consequently, the maximal SBP of the
transformation, governed by approximation (29), be-
comes only 70 by 70 pixels. The desired diffraction
order of the binary CGH was imaged by a telescope
composed of two high-quality Fourier lenses and
interfered with a reference plane wave at an angle of
20°. This interference pattern was recorded on an
Agfa 8E56 holographic plate, yielding the final off-
axis HOE.

This HOE was then inserted into an optical arrange-
ment as shown in Fig. 1, adjacent to an input
transparency. The input was a scene composed of
black and transparent rectangles whose width in each
direction formed a geometric series. The incident
illumination was = 514.5 nm from an argon laser,
and the incident angle was 20°. The results of the
logarithmic transformation are shown in Fig. 5 for
three different input scenes. As expected, the outputs
are composed of equal size squares, although some
artifacts due to diffraction effects in the input plane
are present. The reduction of intensities at the bot-
tom right corner of the output scenes results from the
conservation of energy by the transformation.

Concluding Remarks

A new method for designing HOE's that can perform
general types of coordinate transformation with rela-
tively high SBP has been presented. It is based on
analytic ray tracing and a geometric shadow approxi-
mation that can be confirmed by the saddle-point
approximation to the Fresnel-Kirchhoff integral. Un-
like earlier designs, no paraxial approximation was
necessary. The design yields an optimal solution for
the grating vector of the HOE, which could then be
exploited to derive an optimal grating function that
may be recorded as a CGH or a COH. To illustrate the
design procedure, a HOE that can perform 2-D
logarithmic coordinate transformations was de-
signed, realized, and evaluated both theoretically and
experimentally. The element whose size was 20 mm
by 20 mm could process input data of 70 by 70
pixels in parallel at an arbitrarily high rate and hence
has a high throughput. The SBP may be increased by
resorting to plotters with higher resolution, such as
an electron-beam recorder, or by increasing the size
of the HOE.
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