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Abstract

We present an optical encryption method based on geometrical phase, which is originated from polarization manipulation. The
decrypted picture is retrieved by measuring the polarization of the beam emerging from the encrypted element. The encrypted element
is achieved by using a computer-generated space-variant subwavelength dielectric grating. Theoretical analyses of the optical concept by
use of Jones and Mueller formalisms, as well as experimental results including full optical decryption process are introduced. Digital
implementation and the possibility of using watermarking are also discussed.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Optical encryption and polarization encryption, in par-
ticular, have attracted much attention recently [1–18]. The
great interest in optical encryption/decryption results from
the ability to perform high space-bandwidth product, as
well as obtaining real-time encryption, its resistance to
unauthorized decryption, and its portability. Moreover,
optical encryption has the possibility of using biometri-
cally based approaches [1]. Different optical encryption
schemes have been suggested such as double-random
phase encryption [2,3,6–8], which was first presented by
Refregier and Javidi [2]. This encryption method can be
applied either with pure amplitude image encoding [2,6]
or with phase-only images encoding [3,5,7]. These methods
require coherent and monochromatic source. However, a
scheme allowing the use of quasi-monochromatic incoher-
ent light has also been suggested [9].

Several groups have proposed polarization encryption
methods, such as using a spatially modulated retardation
approach [11–14] or a spatially modulated azimuthal angle
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procedure [15–18]. Polarization encryption provides addi-
tional flexibility in the key encryption design by adding a
polarization state manipulation to the phase and amplitude
manipulation conventionally used in optical encryption
methods [11–18]. This feature is advantageous as it makes
the polarization encryption method more secure. The pro-
posed methods were realized by use of liquid crystal modu-
lators. Recently, we demonstrated a method of polarization
encryption using computer-generated space-variant sub-
wavelength dielectric gratings (SWG) [17]. We have also
shown that space-variant polarization state manipulation
inevitably leads to a phase modification of geometrical ori-
gin, which is a manifestation of the geometrical Pancharat-
nam-Berry phase [17–21].

In this paper, we present a comprehensive theoretical
analysis along with experimental demonstration of our
polarization encryption approach, which is based on
SWG. The analysis is done either by Jones calculus or by
Mueller formalism. We also describe various decryption
processes. In the first decryption method, which is analyzed
by Jones calculus, three different intensity measurements
are sufficient while in the second method, which is analyzed
using Mueller formalism, four different intensity measure-
ments are required. The advantage of the later method is
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that the values of the birefringent parameters of the encry-
pted elements are not required for the analysis process,
thus the method is insensitive to spatial fabrication errors
and can be used with incoherent, polychromatic and unpo-
larized illumination. These two methods use digital key for
decrypting the image. A third complete optical decryption
method, utilizing a subwavelength grating key element, is
also presented. Our encryption method, which is imple-
mented by use of a robust and stable SWG element, can
be achieved using a single lithographic process [21,22]. As
a result, this method is suitable for chip integration and
can be applied to personal security cards, e.g., credit cards
or identification cards. Geometrical phase encryption
can also be implemented digitally. An important advantage
of the digital implementation is the ability to use water-
marking.
Section 2 describes the concept of the geometrical phase

polarization encryption along with the possibility of using
watermarking, when the process is implemented digitally.
In this section we analyze the encryption method using
both Jones calculus and Stokes–Mueller formalism. Sec-
tion 3 presents the experimental results, verifying our con-
cept along with a complete optical decryption process using
a space-variant subwavelength key element. Finally, Sec-
tion 4 provides our concluding remarks.
Fig. 1. (a) Schematic representation of the concept of geometrical phase encr
wave plate’s orientation function, hi + hk, in grayscale. (d) Simulated polarizat
near the eyebrow of Einstein, seen in (b).
2. Theory

When the period of a grating is smaller than the incident
wavelength, only the zeroth order is a propagating order,
and the grating behaves as a layer of uniaxial crystal with
the optical axes perpendicular and parallel to the grating’s
grooves [18,21]. Therefore, SWGs are considered to be
wave plates with constant retardation and space-varying
fast axes, the orientation of which are denoted by h(x, y)
[21,22].

In order to encrypt a primary image, a SWG that
encodes the image intensity added by an arbitrary key func-
tion is formed. The SWG, which acts as a space-variant
rotating wave plate, imprints the image intensity, in addi-
tion to a random key function, in the local orientation of
the wave plate’s fast axes. Decryption is performed by illu-
minating the encrypted SWG with a uniformly polarized
beam and retrieving the primary image by analyzing the
emerging Stokes parameters with the correct key, as shown
in Fig. 1(a).

2.1. Analysis of the encryption method using Jones calculus

It is convenient to describe SWGs by using Jones calcu-
lus. In this representation, a uniform wave plate in which
yption. (b) Primary image intensity to be encrypted. (c) Encrypting SWG
ion state of the beam emerging from the SWG, taken from a small region
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the fast axis is oriented along the y-axis can be described by
the Jones matrix

W ¼
tx 0

0 tyei/

� �
; ð1Þ

where tx, ty are the real amplitude transmission coefficients
for light polarized perpendicular and parallel to the opti-
cal axes and / is the retardation of the wave plate. If
the orientation of the wave plate,h(x, y), is space-varying,
i.e. different at each location, then the space-variant wave
plates can be described by the space-dependent matrix

TCðx; yÞ ¼ Rðhðx; yÞÞWR�1ðhðx; yÞÞ; ð2Þ

where RðhÞ ¼ cos h � sin h
sin h cos h

� �
is a two-dimensional

rotation matrix. For convenience we adopt the Dirac bra-
ket notation, and convert TC(x, y) to the helicity base in
which jRi ¼ ð 1 0 ÞT and jLi ¼ ð 0 1 ÞT are the two-
dimensional unit vectors for right-handed and left-handed
circularly polarized light. In this base, the space-variant
polarization operator is described by the matrix, T(x, y) =

UTCU
�1, where U ¼ 1ffiffi

2
p

1 i
1 �i

� �
is a unitary conversion

matrix. Explicit calculation of T(x, y) yields

Tðx; yÞ ¼ tx þ ty expði/Þ
2

1 0

0 1

� �
þ tx � ty expði/Þ

2

�
0 exp½i2hðx; yÞ�

exp½�i2hðx; yÞ� 0

� �
. ð3Þ

Thus, for an incident wave with a right-hand circular polar-
ization state and an unknown distributed complex ampli-
tude that follows the paraxial approximation, we find
that the resulting field is

jEouti ¼ gRjRi þ gL exp½�i2hðx; yÞ�jLi; ð4Þ
where gR = [tx + tyexp(i/)]/2 and gL = [tx � tyexp(i/)]/2
are the complex field coefficients. From Eq. (4) we see that
the emerging beam comprises two polarization orders. The
first maintains the original polarization state and phase of
the incident beam, and the latter is left-handed circularly
polarized and has the phase modification of �2h(x, y).
The phase modification of the |Li polarization order orig-
Fig. 2. (a)–(c) Three simulated intensity pictures generated by the decryption p
90�. The arrows indicate the orientation angle of the polarizer. (d) Decrypte
intensities shown in (a)–(c).
inates solely from the local changes in the polarization state
of the emerging beam, and is therefore geometrical in nat-
ure [17–21].

Let us assume that a SWG with a space-varying wave
plate orientation function of hi(x, y) encodes the primary
image of young Einstein, as depicted in Fig. 1(b). The rela-
tionship between the primary image intensity I and hi is
chosen to be hi = aI(x, y), where a is a constant. In order
to encrypt the encoded primary image information embed-
ded in the SWG, we add a random rotation function, hk(x,
y), to the space-varying wave plates’ orientation. This rota-
tion factor serves as an encryption/decryption key. The
total orientation function of the wave plates, comprising
the encrypted SWG, is shown in grayscale in Fig. 1(c). In
order to decrypt the primary image, we first illuminate
the SWG with |Ri polarized light. The beam emerging from
the SWG is a vectorial interference between the two differ-
ent polarized beams, as can be seen from Eq. (4). The geo-
metrical phase added to the |Li polarized beam equals
�(ui(x, y) + uk(x, y)), where ui(x, y) = 2hi(x, y) and
uk(x, y) = 2hk(x, y) denote the geometrical phases added
by the encoded primary image intensity and the encoded
key, respectively. Fig. 1(d) depicts the space-variant polar-
ization direction emerging from a simulated SWG with
optical parameters of tx = ty = 1 and / = p/2. The emerg-
ing field, which is a result of the vectorial self-interference,
is a space-varying polarized field. As can be seen, the orien-
tation of the arrows is random. The geometrical phase key,
uk(x, y), scrambles the space-variant polarization state of
the beam and thus spatially randomizes the geometrical
phase encoding the primary image, ui(x, y). In order to
retrieve the primary image’s geometrical phase, we need
to measure the Stokes parameters of the beam emerging
from the SWG. The Stokes parameters of a fully polarized
light (S0 � S3) can be calculated using three intensity mea-
surements. These measurements are taken when the trans-
mitted light is passed through a polarizer with its axis
oriented at 0� (I0), 45� (I45) and 90� (I90). A camera is used
to capture the intensity pictures. An example of these mea-
surements, taken from the simulated encrypting SWG, is
presented in Fig. 2. The relations between the Stokes
parameters and the measured intensities are
rocess with the polarizer in the different orientations: (a) 0�, (b) 45� and (c)
d image achieved by the decryption process (Jones formalism) using the
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S0 ¼ I0 þ I90; ð5aÞ
S1 ¼ I0 � I90; ð5bÞ
S2 ¼ 2I45 � S0; ð5cÞ

where S0 = |hEout|Ri|2 + |hEout|Li|2, S1 = 2Re{hEout|Ri-
hL|Eouti} and S2 = 2Im{hEout|RihL|Eouti}, Re{} and Im{}
denote the real and imaginary parts of the expression inside
the curl brackets, ha|bi denotes the inner product, and
|Eouti is calculated from Eq. (4). By using the Stokes
parameters, that were calculated from Eq. (5), and apply-
ing the geometrical phase key, we can retrieve the phase
function (ui(x, y)) of the primary image, to give

uiðx; yÞ ¼ arctan½S2ðx; yÞ=S1ðx; yÞ� � argfgRg�Lg � ukðx; yÞ;
ð6Þ

where arg{} denotes the argument of the expression in the
curl brackets, and * denotes the complex conjugate.
Fig. 2(d) depicts the decrypted image retrieved from the
simulated intensities presented in Fig. 2(a)–(c). Since the
emerging beam is fully polarized, the fourth Stokes param-
eter, S3, is not required. Note that the complex field coeffi-
cients, gR and gL, have no effect on the decryption process
as long as they are space-invariant, as indicated by the
argument (arg) expression written in Eq. (6). Thus, spatial
independence of the subwavelength parameters allows us
to ignore the SWG parameters’ tx, ty, and / values.

The theoretical analysis of the encryption method
described here is accompanied by a computer simulation.
This simulation can be regarded as the digital implementa-
tion of our method. The optical implementation will be
experimentally described in the next chapter. When using
digital implementation, the encryption process ends after
the formation of the three intensity pictures achieved by
the simulated analyzer. A great advantage of the digital
implementation approach is the possibility of using water-
marking. The watermarking procedure is achieved by add-
ing a false image (as a deception) to the intensity pictures
generated by the encryption process, such that

IWM
0 ¼ I0 þ IWMP; ð7aÞ
IWM
45 ¼ I45 þ IWMP; ð7bÞ
IWM
90 ¼ I90 þ IWMP; ð7cÞ
Fig. 3. (a)–(c) Three simulated watermarked pictures with the polarizer oriente
the polarizer. (d) Decrypted image achieved by using the three watermarked p
where IWMP symbolizes the watermark picture and IWM
0 ,

IWM
45 and IWM

90 symbolize the watermarked intensity pic-
tures. Although the watermark picture has little effect on
the decryption process, it can be used to mislead unautho-
rized receivers. Fig. 3(a)–(c) show the watermarked inten-
sity pictures for the three polarization orientations 0�, 45�
and 90�, respectively, while Fig. 3(d) shows the properly de-
crypted image when using the watermarked intensities in
the decryption process with the correct geometrical phase
key.

2.2. Analysis of the decryption process by using Mueller

formalism

Another method for describing a SWG is the Stokes–
Mueller fomalism approach. In this representation, a uni-
form wave plate in which the fast axis is oriented along
the y-axis can be described by a 4 · 4 matrix known as
the Mueller matrix,

W ¼ 1

2

t2x þ t2y t2x � t2y 0 0

t2x � t2y t2x þ t2y 0 0

0 0 2txty cos / �2txty sin /

0 0 2txty sin / 2txty cos /

0
BBBB@

1
CCCCA;

ð8Þ
where tx, ty are the real amplitude transmission coefficients
for light polarized perpendicular and parallel to the optical
axes and / is the retardation of the wave plate. If the ori-
entation of the wave plate is space-varying, i.e. different at
each location, then the space-variant wave plates can be de-
scribed by the space-dependent matrix

Mðx; yÞ ¼ Rðhðx; yÞÞWR�1ðhðx; yÞÞ; ð9Þ
where

RðhÞ ¼

1 0 0 0

0 cos 2h sin 2h 0

0 � sin 2h cos 2h 0

0 0 0 1

0
BBB@

1
CCCA;

is the Mueller rotation matrix. Explicit calculation of
M(x, y) yields
d at (a) 0�, (b) 45� and (c) 90�. The arrows indicate the orientation angle of
ictures and the correct key.



Mðhðx; yÞÞ ¼

jAj2 þ jBj2 2RefAB�g cos 2h 2RefAB�g sin 2h 0

2RefAB�g cos 2h jAj2 þ jBj2 cos 4h jBj2 sin 4h 2ImfAB�g sin 2h

2RefAB�g cos 2h jBj2 sin 4h jAj2 � jBj2 cos 4h �2RefAB�g cos 2h
0 �2ImfAB�g sin 2h 2ImfAB�g cos 2h jAj2 � jBj2

0
BBB@

1
CCCA; ð10Þ

G. Biener et al. / Optics Communications xxx (2006) xxx–xxx 5

ARTICLE IN PRESS
where A = [tx + tyexp(i/)]/2 and B = [tx � tyexp(i/)]/2 and
Re{} and Im{} denote the real and imaginary parts of the
expression inside the curl brackets.

In order to decrypt the primary image, we need to mea-
sure the space-variant subwavelength groove orientation,
hi + hk. As can be seen from Eq. (10) the groove orienta-
tion is found by dividing the SWG Mueller matrix mem-
bers �m42 by m43, which results in

�m42

m43

¼ ImfAB�g sin 2h
ImfAB�g cos 2h ¼ tan 2h. ð11Þ

We note that the imaginary parts written within the two
matrix members are canceled when dividing these two
members, as can be seen in Eq. (11). This result indicates
that the extracted space-variant subwavelength orientation
function does not depend on the subwavelength grating’s
parameter values. Thus, the decryption method is insensi-
tive to spatial fabrication non-uniformities. Another con-
clusion results from the cancellation of the subwavelength
grating parameter values is that the decryption process
can be implemented in an incoherent, quasi-monochro-
matic, and unpolarized source. While tx, ty and / are pro-
cess-dependent parameters, h is very accurate and does not
depend on either the process or on the illumination. There-
fore, by extracting h without the influence of tx, ty and /,
the decryption process is simplified and made more
accurate.

By extracting hi + hk and applying the correct key, we
can retrieve the primary image, thus

hi ¼
1

2
arctan

�m42

m43

� �
� hk. ð12Þ

The measurement of the Mueller matrix members, m42 and
m43 is carried out by illuminating the SWG with two differ-
ently polarized beams. For m42 we will illuminate with hori-
zontally linear polarized beam, and form43wewill illuminate
Fig. 4. (a) Primary image intensity to be experimentally encrypted. (b) Subw
microscope (SEM) image of an area on the SWG. (d) SEM image of the subw
the SWG with 45� oriented linearly polarized beam. In both
cases the intensities are measured using a circular analyzer,
which is composed of a quarter wave plate (QWP) oriented
at 0� and a polarizer oriented at 45� and�45�, for the trans-
mitted |Ri and |Li polarization state, respectively. The inten-
sities resulting from the circular analyzer with a polarizer
oriented at 45�(�45�) are denoted by Ia45ðIa�45Þ, where a
equals 0�or 45�, for horizontally or 45�oriented linear polar-
ized illumination, respectively. Explicitly the connection be-
tween the measured intensities and the relevant Mueller
matrix elements is given by

m42 ¼ I0�45 � I045;

m43 ¼ I4545 � I45�45.
ð13Þ
3. Realization and experimental results

We formed binary chrome masks of the encrypted image
to encrypt the primary image intensity, as depicted in
Fig. 4(a). The amplitude transmission, t(x, y), of the masks
is derived from

tðx;yÞ¼U s cos
2p
K
ðxcos hðx;yÞþ y sin hðx;yÞÞ

� �
� cosðpqÞ

� �
;

ð14Þ
where K and q are the period and fill factor of the subwave-
length grating, respectively, h(x, y) is the groove orienta-
tion function of the encrypted image, and Us is the unit
step function defined by

U sðnÞ ¼
1; n P 0

0; n < 0

�
. ð15Þ

The mask was comprised of 20 · 20 pixels, each pixel hav-
ing dimensions of 500 lm · 500 lm. A subwavelength per-
iod of K = 2 lm was selected together with a fill factor
avelength grating mask of the encrypted element. (c) Scanning electron
avelength grating’s grooves.
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q = 0.5 for use with CO2 laser radiation with a 10.6 lm
wavelength. Fig. 4(b) shows a magnified geometry of the
mask. The mask was transferred by contact lithography
to 500 lm thick GaAs wafers onto which had been depos-
ited a 2000 Å-thick layer of SiNx. The SiNx deposition was
achieved by enhanced chemical vapor deposition (PECVD)
at 900 mTorr and 300 �C. At this stage, a 700 Å Ni adhe-
sion layer was used for the lift-off process. Next, the SiNx

layer was etched through the Ni strips, which served as a
mask. The etching was performed by reactive ion etching
(RIE) for 30 s at room temperature with CF4 and O2 at
gas flow rates of 35 and 14 sccm, respectively, and at a
pressure of 80 mTorr. The GaAs was etched by electron cy-
clone resonance (ECR) for about 4 min, with the etched
SiNx layer serving as a mask. The ECR conditions were:
20 sccm of Cl2, 5 sccm of Ar, 75 W RF power and 600 W
microwave power, at 100 �C. The remaining SiNx was re-
moved using HF acid resulting in a grating with a nominal
depth of 2.5 lm. At this stage, an anti-reflection coating
was deposited on the backside of the element to finish the
fabrication of the desired SWG. Fig. 4(c) shows a scanning
electron microscope (SEM) image of the central part of the
Fig. 5. (a) and (b) represent the calculated Stokes parameters S1 and S2 , resp
using the three intensity measurements. (c) Decrypted image obtained by us
formalism). (d) Measured polarization state of the beam emerging from the S

Fig. 6. (a) and (b) Two measured intensity pictures generated by the decry
illumination analyzed by a circular analyzer (QWP oriented at 0� and the polar
45� linearly polarized illumination. (e) Decrypted image achieved by the decry
element. Fig. 4(d) shows a SEM image of the subwave-
length grooves. Note the rectangular shape of the grooves.
The encrypted element resulted in a measured retardation
value of / = 0.4p and amplitude transmission coefficients
of tx = 0.88 and ty = 0.77; these values are close to the the-
oretical predictions achieved by rigorous coupled-wave
analysis utilizing the measured profiles of the gratings.

Following the fabrication, the encrypted element was
illuminated with a right-handed circularly polarized light
at 10.6 lm wavelength. The beam emerging from the
encrypted element was then transmitted through a pola-
rizer oriented in the three different orientations (0�, 45�
and 90�). Fig. 5(a) and (b) show the two Stokes parameters,
S1 and S2, which were calculated from the three intensities
measured using Eq. (5). The decrypted image shown in
Fig. 5(c) was attained by applying the Stokes parameters
and by using Eq. (6) with the correct geometrical phase
key, uk. The primary image is clearly observed, thus dem-
onstrating the successful decryption of the coded image.
Fig. 5(d) shows the measured space-variant polarization
directions emerging from the encrypted SWG. As can be
seen, the orientation of the arrows is completely random
ectively. The calculation of the relevant Stokes parameters were achieved
ing S1 and S2 depicted in (a) and (b) along with the correct key (Jones
WG.

ption process (Mueller formalism) for the horizontal linearly polarized
izer oriented at (a) 45� and (b) �45�). (c) and (d) Same as (a) and (b) with a
ption process using the intensities shown in (a)–(d).
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as expected (see also Fig. 1(d)). A second approach of using
Mueller formalism was also tested. Fig. 6(a)–(d) show the
four intensity measurements, I045, I0�45, I4545 and I45�45, and
Fig. 6(e) is the decrypted image achieved using the four
intensity pictures together with the correct key. Again,
the image was successfully decrypted. If the wrong key
were to be used, such as the one seen in Fig. 7(a), the result-
ing decrypted image would show only stationary white
noise, as shown in the experimental result of Fig. 7(b),
and it would be impossible to reconstruct the original
image.

We also propose an alternative method for decryption
by using the optical setup illustrated in Fig. 8. This method
involves two SWGs in which one encodes the encrypted
image with the transmission matrix
Fig. 7. (a) Wrong geometrical phase key. (b) ‘‘White noise’’ decrypted
image resulting from using the key depicted in (a), along with the
measured intensities shown in Fig. 6(a)–(d).

Fig. 8. Optical decryption concept comprising the encrypted and key
elements. A telescope (not shown) between the two elements is used in the
experiment to image the complex amplitude of the beam emerging from
the encrypted element onto the key element. The wave plate’s orientation
function, hk(x, y), is shown in grayscale in the above left inset. The beam
emerging from the key is transmitted through a circular polarizer and then
imaged onto a camera. The upper right inset represents the experimental
result of the optical decryption.
Te ¼ gR
1 0

0 1

� �
þ gL

0 exp½i2heðx; yÞ�
exp½�i2heðx; yÞ� 0

� �
;

ð16Þ
where he = hi + hk, and the other encodes the key, having
the transmission matrix

Tk ¼ gR
1 0

0 1

� �
þ gL

0 exp½i2hkðx; yÞ�
exp½�i2hkðx; yÞ� 0

� �
.

ð17Þ
The space-variant subwavelength key element was fabri-
cated upon a 500 lm – thick GaAs wafer with a 2 lm sub-
wavelength period, employing the same process used to
form the encrypted element. In order to decrypt the image,
we illuminated the encrypted element with a right-handed,
circularly polarized CO2 laser radiation at a wavelength of
10.6 lm. The beam was then transmitted through a 4-f sys-
tem followed by the key element. The beam emerging from
the key element has the form of

jEdi ¼ TkTejRi
¼ bg2R þ g2L expðiuiÞcjRi þ 2gRgL exp½�iðui

þ2ukÞ=2� cosðui=2ÞjLi;
ð18Þ

where ui encodes the primary image. The emerging beam
was then passed through a circular polarizer to block the
right-handed circularly polarized portion of the beam leav-
ing only

jEouti ¼ 2gRgL exp½�iðui þ 2ukÞ=2� cosðui=2ÞjLi. ð19Þ
Finally, the filtered portion of the beam was imaged onto a
Pyrocam III camera. The experimental result is shown in
the inset of Fig. 8, indicating good agreement with our pre-
diction. As can be seen from the last result, the intensity of
the decrypted image captured by the camera is propor-
tional to cos ui. In order to identically reproduce the pri-
mary image’s intensity without further analysis, we need
to encode the primary image’s intensity using the relation-
ship hi ¼ a cos�1ðIÞ instead of the linear relationship used
above.

4. Conclusions

We have introduced an approach for geometrical phase
encryption using spatial polarization state manipulation.
This paper presented a theoretical analysis using Jones cal-
culus and Mueller formalism along with experimental
results. The decryption method which was analyzed using
Mueller formalism is insensitive to spatial manufacturing
errors and can be applied to incoherent, polychromatic,
and unpolarized light. A full optical decryption method
was also demonstrated. While full optical decryption has
the advantage of using only a single measurement, the
method requires coherent, monochromatic, and polarized
illumination and high quality fabricated elements. Our
method can be realized using space-variant subwavelength
dielectric gratings, thereby making it suitable for personal
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security cards. It can also be implemented solely in a digital
environment thus enabling the additional security feature
of watermarking.
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