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An analytic design of hybrid achromats that combine refractive and diffractive elements is presented.
The design procedure does not rely on paraxial approximations and involves two separate stages. In the
first stage the chromatic aberrations are corrected for the paraxial rays, and in the second stage the
spherical aberrations are corrected by addition of an aspherical phase function to the diffractive
element. The residual spherochromatic aberrations of the achromat are evaluated both analytically and
numerically, with good agreement between the results. Finally, we illustrate the design procedure by
designing a plano-convex achromat for IR radiation with little chromatic dispersion.

1. Introduction

Diffractive and refractive elements can be combined
to eliminate, or at least significantly reduce, chro-
matic aberrations.l These so-called hybrid achro-
mats exploit the fact that the dispersion of refractive
elements is opposite that of diffractive elements,' so
they can cancel each other. The attractive aspect of
hybrid achromats is that, unlike wholly refractive
achromats, they require only one type of refracting
material, and the curvatures of the refractive sur-
faces are not as extreme.

The usual approaches to designing hybrid achro-
mats involve numerical techniques that are based on
established design routines for refractive elements.3
The more general analytic design approaches have
thus far included paraxial approximations, so they
were confined to elements with relatively large f
numbers.2 In this paper we introduce an analytic
design of hybrid achromats that does not rely on
paraxial approximations, although thin-lens approxi-
mations are still used to simplify the mathematical
treatment. Our approach is thus applicable to ele-
ments with relatively low f numbers. It can yield
more general solutions as well as better physical
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insight than the numerical optimization techniques.
To illustrate our approach, we designed a hybrid
focusing lens for IR radiation. The performance of
the lens is analyzed by ray tracing, and the results are
compared with those of a standard singlet. Finally,
we discuss how to generalize our approach to include
the finite thickness of the elements, so as to extend its
validity to elements with even smaller f numbers.

2. Achromat Design Procedure
In general, the goals for a proper design of achromats
are to minimize both chromatic and spherical aberra-
tions. These are also the goals in our approach to
designing a hybrid achromat of the form shown in
Fig. 1; as shown, the achromat comprises a refractive
element and an adjacent diffractive element.

With our approach, one can correct the first-order
chromatic aberrations first by properly dividing the
paraxial optical power (the inverse of the focal dis-
tance) between the diffractive element and the refrac-
tive element.2 Then the spherical aberrations of the
refractive lens are calculated with a thin-lens approx-
imation,5 and they are corrected by incorporation of
the opposite aberrations into the diffractive surface.
Finally, the residual aberrations, known as sphero-
chromatism,5 are evaluated to ensure that they are
not excessive.

A. Chromatic Aberrations
The chromatic dispersion of a refractive element is
usually characterized by its Abb6 V number,2 which is
defined as

nd- 1
Vr = dflf - (1)
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Fig. 1. Schematic representation of a hybrid diffractive-refrac-
tive achromat.

where n, nd, and f are the refractive indices at
wavelengths X,, Xd, and Xf, respectively. The three
wavelengths usually denote three standard lines in
some spectral range. For example, in the visible
regime Xc, Xd, and Xf are the classical spectroscopic
wavelengths of 0.6563, 0.5876, and 0.4861 ,im, respec-
tively. In the IR regime Xc, Xd, and Xf could be 12, 10,
and 8 gim, respectively. It is also possible to charac-
terize the chromatic dispersion of a diffractive ele-
ment in a similar manner, where the diffractive V
number is defined as2

Vd = Xd
X -X.,

(2)

Note that the V number for diffactive elements is
negative (assuming Xf < ), whereas the V number
for refractive elements is always positive. There-
fore, by properly dividing the paraxial optical power,
which is related directly to the V numbers, between
the refractive and diffractive elements, it is possible to
reduce the overall chromatic dispersions of hybrid
elements. Assuming negligible separation between
the refractive and diffractive elements, this optical
division of the paraxial optical power is2

amount to the primary spherical aberrations at the
final image5 :

S = -Y2 fr, 2(Gic3 - G2c2c, + G3c2v, + G4cc2

- G5cclvl + G6cV12 ), (4)

where y is the distance from the optical axis, v1 is the
reciprocal of the object distance to the element, cl =
1/ri, c = 1/f(n - 1), and the G terms are complicated
functions of the refractive index of the lens.5 When
we assume an incoming plane wave (vl = 0) and a
plano-convex lens (c, = c), Eq. (4) simplifies to

Y2
S (n - 1)3fr, (G, - G2 + G4), (5)

with

G,= /2n2(n - 1),

G2= /2 (2n + 1)(n - 1),

G4= 1/2(n + 2)(n - 1)/n.

The alternative choice for a plano-convex lens (c, = 0)
would yield spherical aberrations with approximately
double magnitude.5 Equation (5) indicates that an
incoming ray, parallel at a distance y to the optical
axis, will be focused to a distance fr(Y) from the lens
along the optical axis, given as5

fr(Y) fro + ay2, (6)

where

a = (G1 - G2 + G4)/fr,O(n - 1)3,

and higher-order terms in y are neglected.
Now the desired focal distance for the diffractive

surface fd(y) should be such that the focal distance F
(independent ofy) at the central wavelength Xd for the
combination of diffractive and refractive elements is a
constant. Assuming negligible separation between
the refractive and diffractive elements, we resort to a
simple lens combination equation:

1 1 1f( ) + ( = = const., (7)

fdo = F d V ) ' fro = F( Vd) (3) where F is the desired focal distance of the hybrid
lens. Solving Eq. (7) for fd(y) yields

where fd,o and fr,o are the paraxial focal distances of
the diffractive and refractive elements, respectively,
and F is the desired focal distance of the hybrid
element.

B. Spherical Aberrations

Consider a thin refractive lens in air with paraxial
focal distance fr,o, refractive index n, and radii of
curvature r, and r2 for the front and rear surfaces,
respectively. This lens contributes the following

(8)fd (Y) - fr(y)F
fr(y F

Finally, to find the phase function for the diffrac-
tive element +(y) that would provide a focal distance
fd(y), we resort to the diffraction relation6

d-(y) _ 27r -y
dy Xd [y2 + fd 2 (y)]1/ 2 (9)
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In the general case, one can find 4)(y) by integrating
Eq. (9) numerically. However, in some cases d(y)

may be expanded as a power series in the small
parameter ay2/fr,o, and retaining only the first two
terms, we have

fd(Y) fd,o + a'y2, (10)

where

a' = -a(fdo/fr,o)2 .

When such an expansion is valid, Eq.
integrated analytically to yield*

(9) can be

= Aa' ln{2a'[a'2 y4 + (2fd,oa' + l)y2 +d

+ 2a'2 y2 + 2 a'fd,o + 11. (11)

C. Spherochromatism

So far we have dealt with the chromatic aberrations
and the spherical aberrations separately. Specifical-
ly we corrected the chromatic aberrations for the
paraxial rays only and corrected the spherical aberra-
tions for the central wavelength d only. Thus, for
nonparaxial rays that are also with wavelengths
different from Xd , we may expect to find residual
aberrations known as spherochromatism.5

To estimate these residual aberrations for the
marginal rays M (where they are expected to be
maximal5), we regard the aspheric component of +(y)
as the phase function for another diffractive element
that is added to the paraxial (spherical) hybrid achro-
mat. This addition component is chosen so as to
cancel the spherical aberrations S at Xd and will lead
to a separate focal distance at this wavelength
fadditional(M, Xd) that obeys the approximation

1 1 1

fadditional(M, Xd) F F + S fly)
In general, at any other wavelength X, this additional
focal distance is

fadditional(M, X) = additional(M, Xd)Xd/X. (13)

If we neglect the wavelength dependence of S for
the paraxial hybrid achromat (this is justified in the
next section by the result in Fig. 3), we can approxi-
mate the (marginal) focal distance of the aspheric
hybrid achromat at any wavelength faspheric(M) ) by

1 1 1

faspheric(M) X) fspheric(M) fadditional(MX) (14)

When we combine Eqs. (12), (13), and (14) and
assume that S is much smaller than F, the residual
spherochromatic aberrations for the marginal rays
are

faspheric(M X) - faspheric(M, Xf) SX/Xd, (15)

where 8 = - f represents the entire relevant
spectral range and XXf X Ad2 is assumed. Relation
(15) can be intuitively explained by the following
reasoning: the aspheric component of (y), which is
perfectly suited to correcting the spherical aberra-
tions S for the central wavelength, has itself a relative
error of 8X/Xd over the entire spectral range. Howev-
er, since the focal distances of lenses that are com-
bined do not simply add up, a formal rather than
intuitive derivation of relation (15) is needed. 

Relation (15) is by no means a lower limit to the
amount of the residual spherochromatic aberrations
of any hybrid achromat. It applies only to the
specific design procedure that is described above.
Nevertheless it does point out a general trend in
hybrid achromats in which the spherical aberrations
of spherical refractive surfaces are corrected by an
aspherical phase function of a diffractive element-
the introduction of significant spherochromatic aber-
rations as given in relation (15). For comparison, if
the spherical aberrations are corrected with an aspher-
ical refractive element, whereas the diffractive ele-
ment corrects only the chromatic aberrations, no
first-order spherochromatic aberrations are expected.

3. Illustrative Example for a Singlet Design

We illustrate our design approach with a specific
example of transforming a plano-convex gallium
arsenide (GaAs) focusing singlet to an achromat.
We consider a commercially available lens with a
diameter of 25.4 mm (y.a. = 12.7 mm), a focal dis-
tance of 76.2 mm (f number = 3.0), and a maximal
thickness of 2 mm. Such GaAs lenses are mainly
used for thermal imaging; so we chose the c, d, and f
wavelengths to be 12, 10, and 8 im, respectively,
resulting in Vd = -2.5 according to Eq. (2). The
refractive index of GaAs at these wavelengths is
3.262, 3.270, and 3.284, respectively, resulting in
Vr = 103.2, according to Eq. (1). The optical perfor-
mance of this singlet was calculated with the aid of a
ray-tracing computer design program that can handle
both spherical refractive surfaces and general aspheric
diffractive phase functions. The results presented
in Fig. 2 depict the variation of the focal distance as a
function of the distance of the incoming ray from the
optical axis of the lens for the wavelengths of 8, 10,
and 12 [im; these results reveal that the maximal
chromatic aberrations of the singlet are 0.75 mm, and
the maximal spherical aberrations (for the marginal
rays) are 0.95 mm, so the maximal total aberrations
are 1.7 mm. For comparison the diffraction-limited
focal depth of the singlet is only 2.5# 2 , 0.2 mm.
The results of the numerically calculated spherical
aberrations shown in Fig. 2 agree with those pre-
dicted by Eq. (6) within 0.005 mm for any radius; this
confirms the validity of Eq. (6) and the approximation
that was used to obtain it.

The first stage of our design involves the correction
of the paraxial chromatic aberrations by adding a
diffractive element with a spherical phase function to
yield a simplified (paraxial) hybrid achromat. The
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Fig. 2. Variation of the focal distance as a function of the distance
of the incoming ray from the optical axis of the GaAs singlet at
wavelengths of 8 pm (solid curve), 10 pm (dashed curve), and 12
Pm (dashed-dotted curve).

paraxial focal distances of the diffractive and refrac-
tive elements that minimize the chromatic aberra-
tions are found from Eq. (3) to be fr,o = 78 mm and
fdo = 3222 mm. Figure 3 shows the variation in the
focal distance as a function of y at the central
wavelength of 10 ,um for this spherical achromat.
The corresponding results for the wavelengths of 8
and 12 ,um deviate by < 0.025 mm for ally terms and
would not be distinguishable from the curve in Fig. 3;
this indicates that the spherical aberrations are in-
deed independent of wavelength at this stage, as was
assumed above when we estimated the residual sphe-
rochromatism. Moreover these results indicate that
the maximal chromatic aberrations for the paraxial
achromat have been reduced by a factor of 300.
However, the spherical aberrations at the maximal
radius are still 0.95 mm, the same as for the GaAs
singlet; this is expected since the spherical phase
function of the diffractive element contributes no
spherical aberrations. 8

To reduce the spherical aberrations of the hybrid
achromat, the spherical phase function of the diffrac-
tive element is now replaced with an aspheric phase
function, which is obtained by numerical integration
of Eq. (9). In this case the expansion parameter of
Eq. (10) is no longer small, so the analytic expression

for +(y) in Eq. (11) is not valid. The optical perfor-
mance of this aspheric hybrid achromat is calculated
as before, and the results are presented in Fig. 4.
They show the variation of the focal distance as a
function of the distance of the incoming ray from the
axis of the lens for the wavelengths of 8, 10, and 12
jim. Several interesting features emerge from Fig.
4. First, the paraxial chromatic aberrations (i.e., the
difference in the focal distance between the three
wavelengths near the optical axis) are very small
(<0.01 mm). Second, the spherical aberrations for
the central wavelength (for which the aspheric phase
was designed) are also relatively small (< 0.025 mm).
Finally, the residual spherochromatic aberrations
(that refer to rays with wavelengths that are different
from the central wavelength, which are also far from
the optical axis) are 0.40 mm, in excellent agreement
with the value of 0.38 mm, as predicted by relation
(15). This indicates that the finite thickness of the
hybrid element (2 mm) as well as higher-order spheri-
cal aberrations have little effect on the optical perfor-
mance.

It is possible to reduce the spherochromatic aberra-
tions by a factor of 2 if the chromatic aberrations
were corrected for the zonal rays5 rather than the
paraxial ones. This complicates somewhat the de-
sign procedure, since the two design stages (chro-
matic aberration correction and spherical aberration
correction) are no longer independent, and several
iterations between them must be performed. The
result from such an improved design procedure is
shown in Fig. 5. The residual spherochromatic aber-
rations here are now 0.22 mm, which is indeed half
of those obtained with the original procedure (Fig. 4)
and - 8 times smaller than the total aberrations of
the GaAs singlet; in fact, they are of the same order as
the diffraction-limited focal depth.

4. Concluding Remarks

We have presented a general analytic design for
hybrid achromats that combines reflective and diffrac-
tive elements. The design does not rely on paraxial
approximations and involves two separate stages.
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Fig. 3. Variation of the focal distance as a function of the distance
of the incoming ray from the optical axis of the simple paraxial
(spherical) hybrid achromat at a 10-pm wavelength.
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Fig. 4. Variation of the focal distance as a function of distance of
the incoming ray from the optical axis of the aspheric hybrid
achromat at wavelengths of 8 pm (solid curve), 10 pm (dashed line),
and 12 pm (dashed-dotted curve).
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Fig. 5. Variation of the focal distance as a function of the distance
of the incoming ray from the optical axis of the improved aspheric
hybrid achromat (chromatic aberrations corrected for the zonal
ray) at wavelengths of 8 pum (solid curve), 10 pAm (dashed line) and
12 pum (dashed-dotted curve).

In the first stage the chromatic aberrations are
corrected for the paraxial rays, and in the second
stage the spherical aberrations are corrected by addi-
tion of an aspherical phase function to the diffractive
element. The residual spherochromatic aberrations
of the achromat were evaluated both analytically and
numerically, with good agreement between the results.
It was shown that such residual aberrations are
proportional to the original spherical aberrations of
the lens and to the spectral bandwidth of the illumina-
tion.

In this paper we concentrated on plano-convex
lenses for the IR wavelength regime. Such lenses
are particularly advantageous because they are rela-
tively simple, and the diffractive element can be
recorded directly on the planar surface with standard
photolithographic techniques.9 Nevertheless our de-
sign approach can be readily applied also to more
general lenses, where the diffractive element can be
formed on a curved surface, for example, with dia-
mond-turning techniques; such hybrid achromats
may have lower aberrations than the plano-convex
achromats presented here because of the additional
degree of freedom that is available.

It is also possible to include in our analytical design
the finite thickness of the refractive lens and a
possible separation between the refractive lens and
the diffractive surface. We can do this by replacing
Eq. (4) by the exact contributions to the spherical
aberration of each refracting surface, and by apply-
ing the exact total contribution at the plane of the
diffractive element instead of using the thin-lens
combination of Eq. (7). The resulting expression for
fd(y) would still be analytical (although more compli-
cated), but to find the phase function of the diffractive
element one should integrate Eq. (9) numerically.
We checked the affects of such thick-lens corrections
for the specific hybrid achromat presented in Section
3 (GaAs, f/3) and found them to be negligible; never-
theless for smaller f numbers (and therefore larger
thicknesses) these corrections become more impor-
tant.

Finally, although our design does not necessarily
provide the optimal achromat, it can give approxi-
mate solutions or serve as a starting point for a more
comprehensive optimization with iterative ray-trac-
ing computer programs.
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