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Rotating vectorial vortices produced by
space-variant subwavelength gratings
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A new class of vectorial vortex based on coherent addition of two orthogonal circularly polarized Bessel
beams of identical order but with different propagation constants is presented. The transversely space-
variant axially symmetric polarization distributions of these vectorial fields rotate as they propagate, while
they maintain a propagation-invariant Bessel intensity distribution. These properties were demonstrated by
use of discrete space-variant subwavelength gratings for 10.6 �m CO2 laser radiation. The polarization
properties were verified by both full space-variant polarization analysis and measurements. Rotating inten-
sity patterns are also demonstrated by transmitting the vectorial vortices through a linear polarizer.
© 2005 Optical Society of America

OCIS codes: 260.5430, 050.2770, 230.5440.
Singularities in scalar wave fields appear at points or
along lines where the phase or the amplitude of the
wave either is undefined or abruptly changes. One
class of singularities is the scalar vortex, which is a
spiral phase ramp around a singularity.1 Until now,
researchers had focused mainly on scalar vortices.2

However, if we allow the polarization to be space
varying, vectorial vortices may appear.3–6 A vectorial
vortex occurs around a point where a scalar vortex is
centered in at least one of the scalar components of
the vectorial wave field. Vectorial vortices are found
in the vectorial fields proposed by Pääkkönen et al.7

and at the center of vectorial Bessel beams.8

In this Letter we propose and demonstrate a novel
set of paraxial beams containing rotating vectorial
vortices. The polarization state of these vectorial vor-
tices rotates on propagation, while an intensity dis-
tribution is maintained that is axially symmetric and
propagation invariant. The vectorial field is analyzed
by use of a stationary phase approximation. Demon-
stration is obtained for 10.6 �m CO2 laser radiation
by fabrication of discrete (piecewise-continuous)
space-variant subwavelength gratings. The vectorial
vortices were investigated by measuring the polariza-
tion state at various locations along the propagation
axis of the resulting beams. Finally, rotating inten-
sity patterns were demonstrated by transmitting the
vectorial vortices through a linear polarizer.

The polarization state of a monochromatic wave is
characterized by two parameters, the ellipticity and
the azimuthal angle of the polarization ellipse.9

Propagation-dependent rotation of the azimuthal
angle can be obtained by superimposing orthogonal
circularly polarized Bessel beams of identical order
but with different propagation constants. Such
beams result from a field of the form

�E� =
1

�2
�exp�im� − ik�� − ��r��R�
+ exp�− im� − ik�� + ��r��L�	. �1�
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In this case �r ,�� are polar coordinates, m is an in-
teger, and � and � are real constants with ��� and
k=2� /�. Right- or left-handed circular polarization is
represented by �R� and �L�, respectively. Each of the
beam’s scalar components contains a vortex of equal
charge and opposite sign. Using stationary phase
approximation,7 the Fresnel propagation integral of
this complicated space-variant polarized beam yields

�E�r,�,z�� = A�r,z���� − ��Jm�k�� − ��r�

�exp�i�m� + k��z���R� + �� + ��

�Jm�k�� + ��r�exp�− i�m� + k��z���L�	,

�2�

where A=��z /� exp�ik�z+r2 /2z− ��2+�2�z /2�	 and
Jm represents the mth-order Bessel function of the
first kind. Thus we find in the paraxial regime a
beam that is the coherent addition of collinear, iden-
tically ordered and orthogonally polarized Bessel
beams, with different arguments and magnitudes
and with spiral phases. By definition, then, the beam
is a vectorial vortex. Significantly, as the scalar com-
ponents have different propagation constants, they
accumulate phase differences (retardation) as the
vectorial vortex propagates. From Eq. (2), the retar-
dation is given by 	
=2�m�+k��z�. This equation
shows that lines with constant retardation have a
spiral form. As a result, the azimuthal angle of the
polarization rotates as the beam propagates, thereby
producing a rotating vectorial vortex. A full rotational
cycle is obtained for 	
=2�, which corresponds to
the propagation distance denoted by zT=� / �k���.
From A�r ,z� we find a linear growth of the intensity
as the beam propagates. However, this growth can
easily be removed by appropriate apodization of the
incoming beam.10 Figure 1(a) shows the calculated
intensity of a vectorial vortex with m=1, �=0.0053,
�=0.0122, and wavelength �=10.6 �m at a propaga-

tion distance of z /zT=0.5. An axially symmetric in-
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tensity distribution is clearly observed. From Ref. 9,
ellipticity angle � and orientation angle � of the field
in Eq. (2) are given by

sin�2��

=
�� − a�2Jm

2�k�� − a�r� − �� + a�2Jm
2�k�� + a�r�

�� − a�2Jm
2�k�� − a�r� + �� + a�2Jm

2�k�� + a�r�
,

�3a�

�mod � = k��z + m� +
�

2
�Jm�k�� − ��r�

�Jm�k�� + ��r�	, �3b�

where � 	 denotes the Heaviside step function. From
Eq. (3a) we find the ellipticity to be axially symmet-
ric, while Eq. (3b) indicates that the polarization el-
lipse rotates uniformly as the vectorial vortex propa-
gates. At the core of the vectorial vortex, both the
ellipticity and the orientation of the polarization el-
lipse are undefined, and the intensity takes on a null
value (dark C point in Ref. 5). This is a typical occur-
rence with a vectorial vortex in which both scalar
components contain a vortex. In Fig. 1(b) the radial
dependence of the ellipticity is plotted for m=1. At
322 and 434 �m the ellipticity is zero and the polar-
ization state is linear. At 370 �m the ellipticity is
−� /4; hence the polarization is right-handed circular.
Azimuthal angle � is undefined at locations of circu-
lar polarization; hence � /2 jumps in Eq. (3b). Figures
1(c) and 1(d) show the calculated local polarization el-

Fig. 1. Simulation results for m=1. (a) Normalized inten-
sity pattern. (b) Radial dependence of the ellipticity angle;
empty circle indicates singularity. (c), (d) Local polarization
ellipses for propagation distances z /zT=0,0.5, respectively.
The domain size is shown by the dotted square in (a). The
concentric solid and dashed circles indicate the locations of
linear and circular polarization, respectively.
lipses for an m=1 vectorial vortex in the vicinity of
the core for z /zT=0 and z /zT=0.5, respectively. The
area of simulation is indicated by the white square in
Fig. 1(a). The concentric solid and dashed circles in-
dicate the locations of linear (L lines) and circular (C
lines) polarizations, respectively.5 Rotation of the po-
larization ellipses according to Eq. (3b), as well as the
� /2 jumps, are clearly observed. Also, the L lines
separate areas of different handedness, as is evident
from Fig. 1(b).4 We note that choosing a different set
of orthogonal polarization states in Eq. (1) produces
different evolution of the polarization states; e.g., su-
perimposing orthogonal linear polarizations results
in a rotation in ellipticity angle �.

Rotating vectorial vortices are easily generated by
use of space-variant subwavelength gratings. It was
found previously11 that under linearly polarized
plane-wave illumination the Jones vector of a beam
emerging from a � retardation space-variant sub-
wavelength grating is given by �Eout�= �1/�2�
��exp�i2��r ,����R�+exp�−i2��r ,����L�	, where ��r ,��
is the local groove orientation and perfect transmis-
sion has been assumed. �Eout� comprises two orthogo-
nal, circularly polarized waves; whereby the phase of
each wave results from manipulation of the space-
variant polarization state and therefore is geometric
in nature.11,12 By choosing �= �m�+k�r� /2 and trans-
mitting �Eout� through an axicon whose phase func-
tion is exp�−ik�r�, we were able to generate the de-
sired field of Eq. (2). According to our approach, the
groove orientation is approximated by ��r ,��mod�

=FN�m�+k�r� /2, where FN�x� is a piecewise continu-
ous function of N discrete steps.12 We fabricated ele-
ments with m=1,2,3,4 upon GaAs wafers for
10.6 �m CO2 laser radiation. The elements were
10 mm in diameter, with a 2 �m local subwavelength
period and N=16. The parameter �=0.0053 was cho-
sen to obtain zT=82 mm, using �=0.0122 as the re-
fractive axicon. The elements were etched to a nomi-
nal depth of 5 �m to achieve the desired �
retardation. For these elements more than 98% dif-
fraction efficiency is expected.12 For a more detailed
description of the fabrication process, we recommend
that the reader consult Ref. 11.

Figure 2(a) shows a scanning electron microscope

Fig. 2. (a) Scanning electron microscope image of the ele-
ment for m=1; inset, grooves of the subwavelength grating.
(b) Measured intensity distributions of linearly polarized il-
lumination imaged through a linear polarizer immediately
behind the elements for m=1,2,3.
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image of the m=3 subwavelength grating. The dis-
crete changes in the groove orientation along the ra-
dial and azimuthal directions are clearly observed.
Note the high aspect ratio �
1:5� and the rectangu-
lar shape of the grooves (shown in the inset). In Ref.
11 the birefringent parameters of this type of sub-
wavelength grating were found to be 0.74 and 0.86
for the amplitude transmissions in the directions par-
allel and perpendicular, respectively, to the subwave-
length grooves, with a retardation phase of 0.97�.
Figure 2(b) shows the intensity immediately behind
the elements for linearly polarized illumination, as
imaged through a linear polarizer. The fringes indi-
cate the space-variant polarization state. Subse-
quently, the axicon was inserted behind the subwave-
length grating and the full polarization state of the
vectorial vortex was measured at various locations
behind the axicon by the four-measurement
technique.9 Figure 3 shows the measured intensity
and azimuthal angle in the vicinity of the inner L line
(Fig. 1) at various distances behind the axicon. The
standard deviation of the azimuthal angle with re-
spect to its desired value was found to be 3% at
72 mm behind the axicon for m=1, thus confirming
our predictions. Note that full rotation of the polar-
ization state was obtained at the predicted propaga-
tion distance of 82 mm. The distortion in the round
shape of the vectorial vortex (including the small
amount of intensity in the center) shown in Figs. 3(a)
and 3(c) results from linearly polarized wave pertur-
bation caused by deviations of the birefrigent param-
eters with respect to their desired values.

Finally, the rotating vectorial vortices were trans-
mitted through a linear polarizer, producing a scalar
rotating beam whose intensity is given by

I =
z

8�
��� + ��2Jm

2�k�� + ��r� + �� − ��2Jm
2�k�� − ��r�

+ 2��2 − �2�Jm�k�� + ��r�Jm�k�� − ��r�

�cos�2m� + 2k��z�	. �4�

Figure 4 shows the calculated braided intensity
structure for m=1,3 along with some experimental
intensity images captured along the propagation axis

Fig. 3. (a), (c) Measured intensity distributions for m
=2,4, respectively. (b) Measured azimuthal angle in the vi-
cinity of the linear polarization circle at various distances

behind the axicon for m=2. (d) Same as (b) but for m=4.
of the beams. Rotation of the intensity pattern is
clearly observed. Also note that full rotation of the in-
tensity pattern is obtained exactly at the same dis-
tance, zT.
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