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Space-variant Pancharatnam-Berry phase optical elements
with computer-generated subwavelength gratings
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Space-variant Pancharatnam—Berry phase optical elements based on computer-generated subwavelength grat-
ings are presented. By continuously controlling the local orientation and period of the grating we can achieve

any desired phase element.

We present a theoretical analysis and experimentally demonstrate a Pancharat-

nam-Berry phase-based diffraction grating for laser radiation at a wavelength of 10.6 um. © 2002 Optical

Society of America
OCIS codes:

The Pancharatnam—Berry phase is a geometric phase
associated with the polarization of light. When the
polarization of a beam traverses a closed loop on the
Poincaré sphere, the final state differs from the initial
state by a phase factor equal to half of the () area, en-
compassed by the loop on the sphere.? In a typical
experiment, the polarization of a uniformly polarized
beam is altered by a series of space-invariant (trans-
versely homogeneous) wave plates and polarizers, and
the phase that evolves in the time domain is measured
by means of interference.*

Recently, we considered a Pancharatnam-Berry
phase in the space domain. Using space-variant
(transversely inhomogeneous) metal stripe subwave-
length gratings, we demonstrated conversion of
circular polarization into radial polarization® and
showed that the conversion was accomplished by a
space-variant phase modification of geometric origin
that affected beam propagation.® Previously, Bhan-
dari suggested the use of a discontinuous spatially
varying wave plate as a lens based on similar geomet-
ric phase effects.” Recent studies have investigated
periodic polarization gratings.®° These authors
showed that the polarization of diffracted orders could
differ from polarization of the incident beam. We
intend to prove and to utilize a connection between
the properties of such polarization gratings and the
space-domain Pancharatnam—Berry phase.

In this Letter we consider optical phase elements
based on the space-domain Pancharatnam-Berry
phase. Unlike diffractive and refractive elements,
the phase is not introduced through optical path
differences but results from the geometric phase
that accompanies space-variant polarization manipu-
lation. The elements are polarization dependent,
thereby enabling multipurpose optical elements that
are suitable for applications such as optical switching,
optical interconnects, and beam splitting. We show
that such elements can be realized using continuous
computer-generated space-variant subwavelength
dielectric gratings. The continuity of the gratings en-
sures the continuity of the resulting field, thereby elim-
inating diffraction associated with discontinuity and
enabling the fabrication of elements with high diffrac-
tion efficiency. We experimentally demonstrate
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Pancharatnam—Berry phase diffraction gratings for
CO;y laser radiation at a wavelength of 10.6 um,
showing an ability to form complex polarization-
dependent continuous-phase elements.

Figure 1 illustrates the concept of Pancharatnam—
Berry phase optical elements (PBOEs) on the Poincaré
sphere. Circularly polarized light is incident on a
wave plate with constant retardation and a continuous
space-varying fast axis whose orientation is denoted
by 6(x, y). We show that, since the wave plate is
space varying, the beam at different points traverses
different paths on the Poincaré sphere, resulting in a
space-variant phase-front modification that originates
from the Pancharatnam—Berry phase. Our goal is
to utilize this space-variant geometric phase to form
novel optical elements.

It is convenient to describe PBOEs by use of Jones
calculus. In this formalism, a wave plate with a
space-varying fast axis is described by the operator

T(x,y) = R[0(x, y) ]I ()R [0(x, y)],

where J(¢) is the operator for a wave plate with retar-
dation ¢, R is the operator for an optical rotator, and
0 is the local orientation of the axis at each point (x, y).
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Fig. 1. Tllustration of the principle of PBOEs by use of the
Poincaré sphere.
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For simplicity, we work with the helicity basis in which
|L) denotes left-hand circular polarization, and |R) de-
notes right-hand circular polarization. In this repre-
sentation, T(x, y) has the explicit form

10

T(x,y) = COS(¢/2)[O 1

} — i sin(¢/2)

0 expli26(x,y)]| .
% {exp[—iZﬁ(x,y)] 0 o

Thus, if a beam with polarization E; is incident on
T(x, y), the resulting beam has the explicit form

Eo = T(x,y)E; = cos(¢/2)E; — i sin(¢/2)
X [(E;|R)exp(—i20) |L) + (E;|L)exp(i26) |R)]- (2)

Using Eq. (2) we can calculate the Pancharatnam
phase front of the resulting wave. We define this
phase front based on Pancharatnam’s definition for
the phase between two beams of different polar-
izations' as ¢,(x, y) = arg[(Eo(0, 0)|Eo(x, y))]. For
incident |R) polarization this calculation yields

¢plx,y) = —6 + arctan[cos ¢ tan 6]
= —6 + arctan[sin(2y)tan 0],

where y is the ellipticity of the resulting beam. Geo-
metric calculations show that ¢, is equal to half of
the area of geodesic triangle () on the Poincaré sphere
defined by the pole |R), |E¢(0)) and |Eq(0)), as illus-
trated in Fig. 1, yield the expected Pancharatnam-—
Berry phase. Similar results can be found for any
incident polarization.

Consequently, if a circularly polarized beam is in-
cident on a space-variant polarization state manipu-
lator, it is subject to geometric phase modification.
Based on Eq. (2), the resulting wave consists of two
components: the zero order and the diffracted order.
The zero order has the same polarization as the origi-
nal wave front and does not undergo any phase modi-
fication. On the other hand, the diffracted order has
polarization orthogonal to that of the incoming wave,
and its phase at each point is equal to twice the lo-
cal orientation of wave plate 6(x, y). Since the phase
modification of the wave front is purely geometric in
origin, the phase of the diffracted orders must also be
geometric. We therefore define the diffractive geomet-
ric phase (DGP) as the phase of the diffracted orders
when the incident beam is circularly polarized. For
incident |R) and |L) polarizations the DGP is equal to
—260(x, y) and 26(x, y), respectively. By correct deter-
mination of the local orientation of the wave plate, any
desired DGP can be realized, enabling the realization of
phase operators such as lenses or diffraction gratings.
Furthermore, since the orientation of the wave plate
varies only from 0 to 7, the DGP is defined as modu-
lus 27, and the elements are analogous to diffractive
optical elements. However, unlike diffractive optical
elements the phase modification in PBOEs does not
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result from optical path differences, but from polariza-
tion state manipulation, and is intrinsically polariza-
tion dependent, with the transmission function given
by the matrix T(x, y) as defined in Eq. (2). This equa-
tion also shows that the diffraction efficiency of the
PBOEs depends on retardation of the wave plate.

A case of special interest is ¢ = 7, for which we
found that the diffraction efficiency is 100% and that
|R) polarization is completely converted into |L) polar-
ization. However, despite the fact that the resulting
polarization is space invariant, the Pancharatnam
phase, ¢, = —26(x, y), is equal to the DGP. This
phase corresponds to half of the area encompassed by
two geodesic paths between the poles that form an
angle of 20 with one another, as illustrated in Fig. 1.
Thus, the DGP is equal to the geometric Pancharat-
nam—Berry phase of a PBOE with 100% diffraction
efficiency. Note that PBOEs operate in different
ways on the two helical polarizations. Consequently,
a PBOE lens designed for a wavelength A, with focal
length £, designed by choosing the direction of the wave
plate so that 260(x, ¥) = 772/ Af lmod 2 iS a converging
lens for |R) polarization and a diverging lens for |L)
polarization.

PBOEs can be realized by use of space-variant sub-
wavelength gratings. When the period of the grating
is much smaller than the incident wavelength, the grat-
ing acts as a uniaxial crystal.! Therefore by correct
control of the depth, the structure, and the orientation
of the grating, the desired PBOE can be made. To de-
sign a PBOE, we need to ensure that the direction of
the grating stripes, 6(x, y), is equal to half of the de-
sired DGP, which we denote as ¢4(x, ). Next we de-
fine a grating vector

K, = Ko(x,y){cos[pq(x,y)/2]% + sin[pq(x, y)/2] 3}

where % and j are unit vectors in the x and y directions,
Ky =27 /A(x, y) is the spatial frequency of the grating
(A is the local subwavelength period), and ¢4(x, y)/2
is the space-variant direction of the vector defined so
that it is perpendicular to the grating stripes at each
point. Next, to ensure the continuity of the grating
thereby ensuring the continuity of the resulting opti-
cal field, we require that V X K, = 0, resulting in a
differential equation that can be solved to yield the lo-
cal grating period. The grating function ¢, (defined
sothat V¢, = K) is then found by integrating K, over
an arbitrary path.'?

We designed a PBOE that acts as a diffraction grat-
ing by requiring that ¢4 = (27 /d)x|mod 2, Where d is
the period of the structure. Applying this to the grat-
ing vector and solving the equation V X K, = 0 yields

K;=27/Ao)exp(—my/d)[cos(mx/d)x — sin(wx/d)¥],

where Ay is the subwavelength period at y = 0.
The grating function is then found as ¢g4(x, y) =
(2d/Ag)sin(mx/d)exp(—my/d). We then realized a
Lee-type binary grating that describes the grat-
ing function ¢.,."* The grating was fabricated for
CO; laser radiation with a wavelength of 10.6 um,
with Ag = 2 um and d = 2.5 mm, and consisted of
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Fig. 2. Geometry of the space-variant subwavelength
grating as well as the DGPs for incident |R) and |L)
polarizations.
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Fig. 3. Measurements of the transmitted far field for the
subwavelength PBOE grating when the retardation is ¢ =
7/2 and ¢ = m, respectively, for incident (a) circular left,
(b) circular right, (c) linear polarizations.

12 periods of d. We formed the grating with a
maximum local subwavelength period of A = 3.2 um,
because the Wood anomaly occurs at 3.24 um for
GaAs.'! We applied the grating to a 500-um-thick
GaAs wafer using contact printing and electron—
cyclotron resonance etching with BCl3 to a nominal
depth of 2.5 um to yield a retardation of ¢ = 7/2. By
combining two such gratings we obtained a grating
with ¢ = 7 retardation. Figure 2 illustrates the ge-
ometry of the grating, as well the DGP for incident |L)
and |R) polarization states as calculated from Eq. (2).
The DGPs resemble blazed gratings with opposite
blazed directions for incident |L) and |R) polarization
states, as expected from our previous discussions.
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After fabrication, we illuminated the PBOEs with
circular and linear polarization. Figure 3 shows the
experimental images of the diffracted fields for the re-
sulting beams, as well as their cross sections when the
retardation was ¢ = 7/2 and ¢ = w. When the in-
cident polarization is circular and ¢ = 7/2, close to
50% of the light is diffracted according to a first-order
DGP (the direction of diffraction depends on the inci-
dent polarization), whereas the other 50% remained
undiffracted to zero order as expected from Eq. (2).
The polarization of the diffracted order has a switched
helicity as expected. For ¢ = 7, no energy appears in
the zero order, and the diffraction efficiency is close to
100%. When the incident polarization is linear E; =
1/v2(IR) + |L)), the two helical components of the
beam are subject to different DGPs of opposite sign
and are diffracted to first order in different directions.
When ¢ = 7/2, the zero order maintains the original
polarization, in agreement with Eq. (2), whereas for 7
retardation the diffraction is 100% efficient for both
circular polarizations, and no energy is observable at
zero order.

To conclude, we have demonstrated novel polar-
ization-dependent optical elements based on the
Pancharatnam—Berry phase. Unlike conventional
elements, PBOEs are not based on optical path differ-
ence but on geometric phase modification resulting
from space-variant polarization manipulation.

E. Hasman’s e-mail address is mehasman@tx.

technion.ac.il.
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