
November 1, 1992 / Vol. 17, No. 21 / OPTICS LETTERS 1541

Computer-generated relief gratings as
space-variant polarization elements
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A method for exploiting nonuniform ultrahigh spatial-frequency relief gratings as space-variant polarization

elements is presented. In this method the local direction of the gratings determines the polarization angles,

while the period of the gratings is controlled to ensure continuity of the grating function for any desired

polarization operation. We illustrate the method with a specific space-variant half-wave plate for laser radiation

of 10.6 Am.

Recent studies have shown that transmissive relief
gratings of ultrahigh spatial frequencies can behave
as homogeneous birefringent materials.1-3 Such an
artificial birefringence was exploited to form wave
plates from several dielectric materials such as
quartz,1 polymethyl methacrylate,2 and photoresist.3

For these, only linear uniform gratings were recorded
to form homogeneous space-invariant polarization
elements. Sometimes, however, elements that have
nonuniform, space-variant polarization are required.
Possible examples are elements for transforming
the azimuthal polarization of high-power annual
CO2 laser beams into a linear polarization and
elements for polarization coding of the data in
optical computing4 and optical neural networks.5

Such space-variant elements are difficult to produce
with natural birefringent materials.

In this Letter we present a method for exploiting
nonuniform relief gratings for space-variant polariza-
tion elements. We show that by controlling the local
direction and period of the grating grooves, we can
obtain the desired polarization change and continu-
ity. Our method is then illustrated with a specific
space-variant half-wave plate that transforms a wave
front with uniform linear polarization into one with
nonuniform polarization.

Consider a binary relief linear grating in air with
a period much smaller than the illumination wave-
length A. The effective birefringence An for this
grating can be derived in accordance with the form
birefringence model6 as

An = n1l -n

- [q + (1 - q)/n2]1/ 2 - [q + (1-q)n2]1/ 2 (1)

where n1l and no are the effective refractive indices
for light polarized parallel and perpendicular to the
grating grooves, respectively, q is the form factor
(linewidth/period), and n is the refractive index of
the grating material. For a normally incident wave
(in the z direction), the retardation phase Cf between
these two orthogonal polarizations for a grating with

relief depth t and effective birefringence An is

(D = (27rr/A)Ant. (2)

When the relief depth is chosen as t = A/(2An), the
resulting retardation phase is cD = ir rad (180°), so
the grating serves as a half-wave (A/2) plate. Such
a half-wave plate grating transforms an input wave
with linear polarization in direction aij, into an output
wave with linear polarization in a different direction
aout, where the direction of the grating grooves is /3 =
(a1in + aout)/2 (all the angles are measured relative to
the y axis). The grating vector is perpendicular to
the grating grooves and may be written as

K = Ko sin(/3)k - Ko cos(3)i, (3)

where x and k are unit vectors in the x and y
directions, and Ko = 2ir/A denotes the spatial fre-
quency of the grating, with A the grating period.
Note that the effective birefringence properties of the
grating do not depend on the period, as long as it is
much smaller than the wavelength.6 Consequently,
within such constraints on the period, Ko may be
arbitrarily chosen. The relationship among arin, aout,

/3, and K is illustrated in Fig. 1.
Now let us assume that the direction of the linear

polarizations of the input and output waves are no
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Fig. 1. Diagram illustrating the relationship among ain,

atout, fl, and K.
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grooves is obtained from Eq. (4) to be /3(x,y) = a'x,
where a' = a/2, and the corresponding grating vector
can be written as

~0 _

K(x,y) = KO(y)sin(ax)k - Ko(y)cos(a'x)*. (9)
INPUT

Fig. 2.
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Transformation from the input uniform polariza-

the output nonuniform polarization. The polar-
direction is indicated by the arrows.

longer constants but are space varying, i.e., ain(x,y)
and aout(x,y). Here the polarization element may
still be a half-wave plate grating, but now the direc-
tion of the grating grooves must be a function of the
coordinates, given as

/3(x,y) = [ain(Xy) + aout(xy)]/2. (4)

Thus the grating is no longer linear and is described
by the following grating vector as

K(x,y) = Ko(x,y)sin[/3(x,y)]S
- Ko(x,y)cos[/8(x,y)]*, (5)

where Ko(x,y)- 2v/A(x,y) is now the local spa-
tial frequency of the grating, which has yet to be
determined.

For the grating vector of Eq. (5) to be physically
realizable in a continuous way, it should be a
conserving vector, i.e., it should fulfill the following
relation 7 :

V X K a2Kx _Ky 0= (6)
ay Ox

Incorporation of Eq. (5) into Eq. (6) yields

Ko cos /3 a -sin 6 ay)
ax a

+ sin 3 -K° + cos 3 aK° = 0. (7)
Ox ay

Equation (7) is a necessary condition for Ko(x,y) at
which a continuous grating whose local groove direc-
tion is /3(x,y) exists. Once such a conserving grat-
ing vector is determined, we can readily derive the
grating function b(x,y) by integrating the grating
vector along any arbitrary path in the xy plane.7 For
example, the path (0, 0) - (x, 0) - (x,y) leads to the
equation

A rx
40k(x,y) A - (xl,y = 0)dx'

+ / fI§(xy')dy'. (8)

Let us consider a simple example to illustrate
the procedure described above. We assume an
input wave with uniform linear polarization, say
in the x direction ain(x,y) = 0, and an output wave
whose direction of polarization is a linear function
of the x coordinate aout(x,y) = ax, where a is a
constant. Such a transformation is illustrated in
Fig. 2, where the arrows denote the direction of the
linear polarization. The local direction of the grating

In Eq. (9),
pend only
Eq. (9) into
which is

Ko(y) = 27r/A(y) is assumed to de-
on the y coordinate. Incorporation of
Eq. (7) yields the requirement on Ko(y),

dKo(Y) = -a'Ko(y).
dy

(10)

Equation (10) can be solved analytically to obtain

Ko(y) = 2exp(-a'y), (11)

where AO is the maximal grating period (at y = 0)
and must be smaller than A. Finally, the grating
function is obtained from Eqs. (8), (9), and (11) to be

s� (x, y) = - A ,sin(a'x)exp(-a'y).
A~a'

(12)

We also performed a modest experiment that is
based on our method. In this experiment we used
the grating function from the first example [Eq. (12)]
to record an element on gallium arsenide (GaAs)
with n = 3.27 and tested it at 10.6-,m radiation
from a CO2 laser. The shape of the element was
chosen as a rectangle, 0 s x s 15 mm and 0 s y s
3 mm, and the direction of the output polarization
was chosen as 00 5 aout S 90°. These choices led to
a constant a' = 7r/60 mm-' in Eq. (12). Also, the
maximal grating period was taken as Ao = 10 ,um,
slightly smaller than the illumination wavelength,
and the resulting minimal grating period (at y =
3 mm) was approximately 8 ,m. Finally, the form
factor that we chose was q = 1/2, so the effective
birefringence as obtained from Eq. (1) is An = 1.065.
Thus, in order to obtain the retardation phase CF = 7r
of a half-wave plate, the relief depth of the grat-
ing grooves should be t = 5.0 Am in accordance to
Eq. (2).

A Lee-type8 binary mask having a grating function
of Eq. (12) was first plotted with a high-resolution

Fig. 3. Electron microscope picture of the relief pattern
from a typical etched section of the polarization element.
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Fig. 4. Experimental setup for measuring the properties
of the polarization element. P1, P2, polarizers; L1-L3,
lenses; D, detector.
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Fig. 5. Experimental and predicted normalized light in-
tensities as a function of the position of the slit.

laser plotter, then optically demagnified by a factor
of 10 onto a photographic plate, which was then
used in a contact print to yield a chrome mask. The
data from the chrome mask were transferred to the
GaAs wafer by a standard lithographic process and
wet etching with H3PO4:H202:H20 (1:1:25).9 The
desired ir retardation phase was obtained by com-
bining two identical elements in cascade, each with
a relief depth of 2.5 ,Am. Figure 3 shows an electron
microscope picture of the relief pattern from a typical
etched section of the element.

The experimental setup is illustrated in Fig. 4.
The polarization element is illuminated by a normally
incident plane wave derived from the CO2 laser and
polarized in the y direction. The output wave from
the element passes through a linear polarizer in the
y direction and is collected by a lens to a detector.
Finally, a 1-mm-wide slit is translated across the
element (in the x direction) so as to measure the light
intensity as a function of x. The measured normal-
ized light intensity, together with the theoretically
predicted intensity as a function of the slit translation
x, is shown in Fig. 5; since the predicted direction of
the output polarization of the element is aout = ax,
the predicted intensity is simply cos2(aout) = cos2(ax).
As is evident, the experimental results have the
same monotonic behavior as predicted, indicating
that space-variant operation on the polarization was
indeed achieved. However, there is some quanti-
tative discrepancy between theory and experiment.
Specifically, the measured intensity does not reach
zero as predicted but remains at approximately 40%

of the maximal value. This unpredicted light has
approximately circular polarization.

Several possible explanations can be given to ac-
count for the discrepancies between the theoretical
and experimental results in Fig. 5. First, the form
birefringent theory that we used is accurate only
when the grating period is significantly smaller than
the wavelength.6 In our experiment, owing to the
limited resolution of the plotter and the lithographic
process, the grating period was only slightly smaller
than the wavelength, so deviations from the theory
are possible; moreover, several diffraction orders in-
deed propagate inside the wafer (substrate modes),
so the validity of the form birefringence model in this
case is questionable. Second, experimental errors in
the etch depth, groove shape, and form factor may
have altered the retardation angle. Finally, because
gratings with ultrahigh spatial frequency have some
antireflection effects,'0 the transmittance of light po-
larized parallel and perpendicular to the grating lines
(TI1 and T1 ) may differ, whereas in our calculations we
assumed that the transmittance would be equal for
both polarizations; note that the transmittance may
be a function of both x and y coordinates.

To conclude, we demonstrated how ultrahigh
spatial-frequency relief gratings can be exploited as
space-variant polarization elements, where the local
direction of the gratings determines the polarization
angles, while the local period of the gratings ensures
continuity. In our experiment, we used gratings
with periods that were only slightly smaller than
the illumination wavelength. This led to some
discrepancies between our predictions that were
based on the simplified form birefringence model
and the experimental results. These discrepancies
may be substantially reduced either by exploiting
gratings with periods that are much smaller than the
illumination wavelength or by resorting to rigorous
electromagnetic calculations of gratings.
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