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Abstract

A novel approach to the design and analysis of space-variant polarization elements using computer-generated
subwavelength metal stripe gratings is presented. We demonstrate that by locally controlling the direction and period of
the grating any desired space-variant polarization state manipulation can be obtained. We illustrate our approach with
two distinct types of manipulators: space-variant polarizers and space-variant polarization state transformations. The
elements were formed on GaAs as well as ZnSe substrates and designed for laser radiation at 10.6 um. The results
include full space-variant polarization calculations and measurements and show high-quality space-variant polarized
beams with a polarization purity of over 99%. © 2001 Published by Elsevier Science B.V.

PACS: 42.25.Ja; 42.40.Jv; 42.79.Dj
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1. Introduction

Metal wire gratings have been known as po-
larizers for many years [1-5], and their use can be
traced back to Heinrich Hertz who in 1888 used
them to test the properties of radiowaves [1]. When
the period of a metal wire grating is much smaller
than the incident wavelength, the grating acts as a
polarizer, reflecting all of the light polarized par-
allel to the wires (TE polarized light), and trans-
mitting only light polarized perpendicular to the
wires (TM polarized light). This is only true for
very small periods and its validity has been ex-
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amined in several papers [2,4]. For larger periods,
still of a subwavelength nature, this assumption is
no longer true, and it is necessary to use vectorial
solutions of the Maxwell equations to predict the
behavior of such gratings. This is typically done
using rigorous coupled wave analysis (RCWA)
[6,7].

Metal stripe gratings are usually linear uniform
gratings, which form homogeneous space-invari-
ant polarizers. Sometimes however, a different
polarization is required at each location. Such
nonuniform space-variant polarization can be
useful for polarization coding of data in optical
communication [8], optical computers [9] and
neural networks, material processing [10], tight
focusing [11], polarimetry [12] and for particle
trapping and acceleration [13].

0030-4018/01/$ - see front matter © 2001 Published by Elsevier Science B.V.

PII: S0030-4018(01)01196-8



170 Z. Bomzon et al. | Optics Communications 192 (2001) 169-181

Recently, we presented a novel approach for
polarization state transformation based on space-
variant subwavelength metal stripe gratings [14].
We showed that by determining the local direction
as well as the period of the grating any desired
space-variant polarization state could be obtained.
However, our discussion was limited only to ele-
ments fabricated on GaAs, and was restricted
to polarization state transformations involving
circularly polarized light for laser radiation at
10.6 pm.

In this paper we present a comprehensive the-
oretical and experimental investigation of space-
variant polarization state manipulation using
computer-generated subwavelength metal stripe
gratings. We extend our discussion to include two
distinct types of manipulators; space-variant
polarizers and space-variant polarization state
transformations. In the case of polarizers, the in-
cident polarization need not be well defined, and
only the transmitted intensity is of interest. We
show that by careful design, the transmission axis
[15] ! (the direction of incident polarization for
which transmission is maximum) can be locally
controlled in order to achieve sophisticated space-
variant polarizers to be used for applications such
as imaging polarimetry [16], and space-variant
intensity manipulation. On the other hand, po-
larization state transformations are designed to
transform a beam with either a specific space-
invariant or a specific space-variant polarization,
into a well-defined space-variant polarized beam.
Although our methods enable good control of the
polarization and transmission intensity, they do
not allow complete independent control of the
two, and they remain connected.

In addition, we also present a unique analysis
method for space-variant polarization transfor-
mations. The method is based on the use of Jones
calculus and RCWA, and enables a full space-

! “The transmission axis of a linear polarizer is defined with
respect to a linearly polarized light beam normally incident on
the face of the polarizer. The transmission axis defines the
direction that the Jones vector must have for the actual gain to
be maximized”.

variant polarization state analysis of the desired
element.

We demonstrate our approach with specific
computer-generated space-variant polarization
state manipulation elements for laser radiation at
10.6 pm. The elements were fabricated on GaAs as
well as on ZnSe wafers using computer-generated
Lee-type binary chrome masks and photolitho-
graphic processing. The experimental results which
were based on a complete space-variant Stokes
parameters measurement revealed high-quality
space-variant polarized beams. Furthermore, we
have found that due to its lower refractive index,
ZnSe may be preferable to GaAs for the realiza-
tion of both polarizers and polarization state
transformations. This is because the lower refrac-
tive index of ZnSe results in uniformity of the
polarization properties over a larger range of pe-
riods.

2. Space-variant polarizers

Gratings are typically defined by a grating
vector, perpendicular to the grating stripes. The
grating vector can be expressed as,

K, = Ko cos()x + K sin(B)y, (1)

where K is the spatial frequency of the grating, f3
is the direction of the vector and X, ¥y are the unit
vectors along the x-axis and the y-axis respectively.

A space varying grating can therefore be de-
scribed by the vector,

K, = Ko(x, ) cos(B(x, y))X + Ko(x,y) sin(B(x,))¥,

2)
for which the local period and direction vary as a
function of x and y. In order for such a grating to
be physically realizable in a continuous way, K,
should be a conserving vector i.e. V x K, =0, or
more explicitly,

B cos(p) ~ Kosin) [%}
:% sin(p) +Kocos(,8){%}, 3)

which is a necessary restraint on K,(x,y) for a
continuous grating with a local groove direction
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p(x,y) to exist. Once the grating vector is deter-
mined, the grating function ¢(x,y), can be found
by integrating Kg along any arbitrary path in the
x—y plane so that V¢ = Kg.

Eq. (3) shows that the local period of space-
variant gratings cannot be arbitrarily determined,
but depends on the space varying choice of f. In
order to understand such gratings, we need to first
determine the effect of the period has on the po-
larization qualities of such gratings. For this pur-
pose we define the polarization contrast ratio
(PCR) as,

O Tau(a)
Pla) = Tre(A) + Trm(A4)’

4)

where A is the period, Trg is the zero-order
transmission when the incident beam is TE po-
larized, and Tty is the zero-order transmission for
a TM polarized beam. If only TM polarized light
is transmitted, P = 1, and if only TE polarized
light is transmitted, P = 0. Thus the PCR provides
a tool for defining the grating’s efficiency as a
polarizer. Note, that since the polarization of TE
and TM beams remains unchanged when trans-
mitted through the grating, and that since any
polarization state can be seen as a combination of
the two, the transmitted intensity for an arbitrary
polarized beam must lye between Trg and Tmy.
This means that if the PCR is greater than 0.5,
larger transmission is achieved for TM polarized
light, and that if it is smaller than 0.5, the larger
transmission occurs for TE polarization.

In order to investigate the dependence of the
PCR and of the transmission axis [15] ! on period
and substrate, we fabricated chirped gratings on
GaAs and ZnSe. The gratings had dimensions of
5 mm x 7.5 mm, and are described by the grating
vector,

K_Znﬁ_ 27 %
£ AX) T Ag+bx

(5)

where the local period varies linearly at a rate
of b = 0.4 um/mm in the x-direction, from A(x =
0)=Ap=2pum to A(x=7.5mm)=>5 pm. The
gratings were fabricated with a duty cycle of 0.55.
To realize the gratings, a chrome mask was fab-
ricated using high-resolution laser lithography.
The grating was then transferred onto the sub-

strate by use of AZ 5214 photoresist. The metal
stripes were then realized using a lift-off technique.
The GaAs substrate consisted of a semi-insulating
wafer 500 pum thick, and the ZnSe substrate was a
2 mm thick window. The metal stripes consisted of
a 10 nm layer of Ti, coated by 60 nm of Au. An
anti-reflection coating was applied to the backside
of the elements.

The experimental setup for measuring the in-
tensity transmitted through the chirped gratings
was as follows. Linearly polarized light at a
wavelength of 10.6 um was emitted from a CO,
laser, and then passed through an additional po-
larizer, to ensure the polarization purity. This was
followed by a half-wave plate, which enabled ro-
tation of the incident polarization without energy
loss. The beam was then expanded and projected
onto the chirped grating of interest. The trans-
mitted beam was magnified through a lens, and the
grating was imaged onto a Spiricon Pyrocam 1.
We then calculated the average intensity for each
row of pixels in the y-direction, obtaining an av-
erage of the transmitted intensity at each local
period. We repeated the measurement for TE and
TM polarized beams, and then calculated the
PCR.

The calculated and measured PCRs for both the
ZnSe and GaAs gratings are shown in Fig. 1. The
calculations were done using RCWA and a com-
plex refractive index of 8.52 + 75.3941 was used for
the gold stripes. The experimental results, are in
good agreement with the theory. Fig. 1 shows that
when the period is small, the PCR for both grat-
ings is close to 1, and for any incident beam, the
transmitted light will be almost linearly polarized.
However, as the period approaches A/n, where
A =10.6 um is the wavelength and #» is the re-
fractive index of the substrate (n = 3.27 for GaAs
and n =24 for ZnSe), the PCR drops sharply
reaching a minimum value of around 0.2. This
minimum occurs at a period of 1/n = 3.24 um for
GaAs, and at a period of 1/n = 4.4 pm for ZnSe.
At this point, most of the transmitted light is in
fact TE polarized, and the grating works as a re-
verse polarizer [3]. After this dip, the merit func-
tion rises again to a value of around 0.6, and the
grating no longer acts as an efficient polarizer. The
location of the dips in both the GaAs and ZnSe,



172 Z. Bomzon et al. | Optics Communications 192 (2001) 169-181

1.2

-
1

©
®
|

A GaAs, experiment

Polarization Contrast Ratio
o
(o]

0.4 - GaAs, theory
O ZnSe, experiment
- = = ZnSe, theory
0.2 4
0 T T T T
0 1 2 3 4 5

period A (um)

Fig. 1. Measured and calculated PCR for the ZnSe and GaAs chirped gratings as a function of the local period.

suggest that this phenomenon is strongly associ- with the RCWA calculations. We note that for
ated with the Wood anomaly [3]. both the GaAs and the ZnSe gratings, when the
Fig. 2 shows the transmission of TE and TM period is much smaller than the wavelength, the
polarized light through the gratings described in TE transmission coefficient is close to zero. On
Fig. 1. The measurements are in good agreement the other hand, the TM transmission coefficient is
0.9
E GaAs (TM) = experiment theory
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Fig. 2. Measured and calculated transmission for TE and TM polarized light incident on the GaAs and ZnSe chirped gratings as a
function of the local period.
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close to what could be expected at an interface
between air and GaAs or ZnSe respectively as if
there were no grating present (71% for GaAs 83%
for ZnSe). This agrees with form birefringence
theory [17,18], when using a complex refractive
index for the metal stripes. This theory predicts
that for very small periods, the TE polarized light
will interact with the grating, as if it were a metal
sheet, and that most of the TE polarized light will
be reflected. As opposed to the TM polarized light
which will behave as if no metal is present. How-
ever, our results also show that this approximation
is valid for only a small range of periods, and that
the TM transmission drops rapidly as the Wood
anomaly is approached.

Figs. 1 and 2 suggest that it is advantageous to
use substrates with low refractive indexes in order
to construct polarizing metal stripe gratings, as
this allows for higher efficiency and uniformity in
the PCR over a larger range of periods, as well as
resulting in higher transmission. It also presents a
technological advantage, because it is easier to
realize gratings with larger periods. However, the
use of certain substrates poses a technical problem,
since suitable photolithographic processes are not
always available.

Next, we apply the results of Fig. 1 to the design
of space-variant polarizers. More specifically, we
wish to create a grating for which the transmission
axis is different at each point. By relating to Fig. 1
we find that, as long as the local period is smaller
than A/n, this axis will be parallel to the grating
vector. We apply this to the design of a specific
grating with a transmission axis that varies linearly
along the x-direction, and is described by the
vector,

—

K, (x,y) = Ko(x,y) cos(ax)X + Ko(x, ) sin(ax)y.

(6)
Incorporating Eq. (6) into Eq. (3) yields,
0K 0Ky .
a—yo cos(ax) = a—xo sin(ax) 4 aKj cos(ax), (7)

which can be solved by equating the coefficients
for the cos(ax) and sin(ax) to zero independently,
resulting in the grating vector,

K, = i—t exp(ay) | cos(ax)Xx + sin(ax)y} , (8)

where A is the period at y = 0. This result leads to
the grating function,

Blw.y) = o sin(ax) explay). )

We realized a Lee-type [19] binary chrome mask
describing the grating function of Eq. (9) using
high-resolution laser lithography. The amplitude
transmission for such a Lee-type binary mask can
be derived as,

1(x,y) = Uslcos(¢) — cos(mq)], (10a)
where Uj is the unit step function defined by,

1, n=0

and where ¢ is the duty cycle of the grating. The
mask is constructed so that where #(x, y) is equal to
one, the mask is chrome, and where #(x, y) equals
zero the mask is clear, so that it represents a binary
description of the function ¢. Note that although ¢
does not affect the results of Egs. (6)—(9), it does
affect the transmission and the PCR. We studied
the effect of g on these parameters, and found that
there is a broad optimum at ¢ = 0.5, and therefore
realized the mask with this duty cycle.

Following the mask fabrication, the mask was
transferred onto the desired substrate and the el-
ement was realized using the lift-off technique de-
scribed previously for the chirped gratings. The
space-variant grating was realized on both, a
500 um thick GaAs wafer and on a 2 mm thick
ZnSe window. The GaAs grating was restricted to
a 5 mm x 3 mm rectangle with a = —18°/mm, and
Ag=2pum so that —90° < f<0° and 2 < A <
5.1 um. On the ZnSe, the element consisted of a
5 mm x 2 mm rectangle, with ¢ = —18°/mm and
Ay = 2.8 um so that 2.8 < A4 < 5.1 um. For both
gratings the fabrication procedure resulted in a
duty cycle of 0.55, with the metal stripes consisting
of an adhesion layer of 10 nm Ti, and a layer of 60
nm Au. An anti-reflection coating was applied to
the backside of the gratings. Fig. 3 shows the
magnified geometry of such a computer-generated
mask with the resulting transmission axis varying

(10b)
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Fig. 3. Illustration of the magnified geometry of a computer-
generated space-variant polarizer for which the orientation of
the transmission axis rotates in the x-direction from 0° to 180°.

in the x-direction from 0° to 180°. The continuity
of the grating can be clearly observed.

Using the experimental setup described earlier,
we illuminated the grating with linearly polarized
light. By rotating the half-wave plate, we could
change the angle of polarization of the incom-
ing beam, and locate the transmission axis along
the element. Fig. 4 describes the direction of the
transmission axis as a function of the x-coordinate

Z. Bomzon et al. | Optics Communications 192 (2001) 169-181

of the element. The measurement was performed
over the region of periods prior to the Wood
anomaly. We see that for both the GaAs and the
ZnSe space-variant gratings the direction of the
transmission axis varies linearly along the x-axis
with a slope of 18°/mm, in agreement with the
theory.

We also examined the transmitted intensity
distribution across the grating for a linearly po-
larized beam. For such illumination, the trans-
mission 1is,

T = Tyy cos® () + Trg sin®(a), (11a)

where o is the angle between the electric field and
the grating, and Ttv and Trg are the period de-
pendant transmission coefficients for TM and TE
polarized light respectively. For a beam linearly
polarized in the x-direction, and incident on the
space-variant grating in discussion, this intensity
distribution will be,

T(x,y) = Trm(y) cos?(ax) + Tre(y) sin®(ax), (11b)

and for an incident beam polarized in the y-
direction this will translate to,

T(x,y) = Tru(v) sin’(ax) + Tre(v) cos*(ax).  (11c)
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Fig. 4. Orientation of the transmission axis for the GaAs and ZnSe space-variant polarizers.
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Fig. 5 shows the transmitted intensity distribu-
tions as a function of the x-coordinate for inci-
dent light linearly polarized in the x-direction as
well as for incident light linearly polarized in the y-
direction. The graph shows the average intensity
measured at each x-coordinate over a small range

0.6

of periods. For GaAs (Fig. 5(a)) this portion
covered a range of periods 2.4-2.8 um, and for
ZnSe (Fig. 5(b)) the range was 3.2-3.45 pm. The
experimental results fit the RCWA calculations,
and the transmitted intensity is distributed as we
expected.

----- X-polarization, theory
0.54 o X-polarization, experiment
Y-polarization, theory

o Y-polarization, experiment

GaAs

0.4

0.3

0.2

Transmission

0.14

0.0 T T T
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----- X-polarization, theory
o X-polarization, experiment ZnSe

Y-polarization, theory

o Y-polarization, experiment

0.4+

0.3+

Transmission

0.2+

0.1+

0.0 . - T
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Fig. 5. Transmitted intensity distribution through (a) the GaAs space-variant polarizer, and (b) the ZnSe space-variant polarizer, for

incident light linearly polarized in the x and y-directions.
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3. Space-variant polarization state transformations

Until now, we have shown the construction of
space-variant polarizers for which only the trans-
mitted intensity is of interest. However, we have
not yet related to the exact polarization state of the
transmitted beam. Since a certain amount of TE
polarized light is transmitted through the grating,
it can be expected that the resulting beam will
generally not be TM polarized. This can be im-
portant for applications such as atom trapping [13]
or tight focusing [11], where the exact polarization
state is important. We therefore commence with a
method for the design of metal wire gratings for
obtaining specific space-variant polarization
wavefronts. In order to do so, we first study the
effect of period and substrate properties on the
resulting polarization.

Fig. 6 describes the polarization of light trans-
mitted through a space-invariant grating. For such

y
K
8
a\Ay
W
b 54
\ \
\ \ —
\ A
\— 7

Fig. 6. Geometrical parameters of the polarization ellipse of
light transmitted through a subwavelength grating.

a grating, the transmitted field will generally be
elliptically polarized. This ellipse can be defined by
the azimuthal angle, y/, which is the angle between
the x-axis and the large axis of the ellipse, and the
ellipticity, y, where tan(y) = b/a is the ratio be-
tween the two axis’s of the ellipse [20]. We define
an additional angle Ay as the angle between the
large axis of the ellipse and the grating vector.

In order to determine the dependence of Ay and
the ellipticity, tan(y), on the period of the grating,
we calculated and measured the Stokes parameters
[20] of the transmitted beam for the chirped grat-
ings when the incident beam was circularly polar-
ized. We chose the direction of the grating so that
Y and Ay coincide. The experimental Stokes pa-
rameters were derived from four intensity mea-
surements. For the first three, the transmitted light
was passed through a polarizer with its axis ori-
ented at 0° (Zp), at 90° (looo) and at 45° (I459). The
fourth measurement was made by orienting the
polarizer at 45°, and inserting a quarter-wave
plate, with its fast axis at 0° between the polarizer
and the element (I;599). The Stokes parameters
were then calculated as,

So = Ioo + oo, (12a)
S1 =1y — Iy, (12b)
Sy = 250 — So, (12¢)
Sy = So — 2Lss.00. (12d)

The azimuthal angle and ellipticity were then de-
rived from the Stokes parameters according to the
equations [20],

tan(2y) = $,/S), (13a)

Fig. 7 shows a comparison between the azi-
muthal angle and the ellipticity of circularly
polarized light at a wavelength of 10.6 pm trans-
mitted through the GaAs and ZnSe chirped grat-
ings. Fig. 7(a) shows the local azimuthal angle for
both gratings, whereas Fig. 7(b) shows their ellip-
ticity. Both ellipticity and azimuth display strong
dependence on the period of the grating. In the
region where the period is much smaller than the
incident wavelength, ¥ and tan(y) are close to
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Fig. 7. Measured and calculated results for (a) the azimuthal angle , and (b) the ellipticity, tan(y), of light transmitted through the

chirped ZnSe and GaAs gratings as a function of the local period.

zero, for both the GaAs and the ZnSe polarization
gratings, and the transmitted beam is nearly lin-
early polarized parallel to the grating vector.
However, as the period becomes larger, the azi-
muthal angle and ellipticity increase. When the
period approaches A/n where 1 is the wavelength
and n is the refractive index of the substrate
(A/n =3.24 for GaAs, A/n=4.4 for ZnSe), we
observe a sharp increase in azimuthal angle and in
ellipticity, in connection with the Wood anomaly.
As evident, the theoretical results are well sup-
ported by the measurements.

Based on the dependence of the azimuthal angle
on the period of the grating, we conclude that in
order to transform circularly polarized light into a
beam with a local azimuthal of i, the local grating
direction should be period dependent and can be
expressed as,

Blx,y) = (x,y) — A (Ko(x, ). (14)
This can then be applied to the grating condition

in Eq. (3) to obtain a new self-containing grating
equation,
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aKO B) — in(f8 oy 0AY 0K,
_yC()S( ) Ky si ( )[_ay @—Koa]
6£x0 sin(f) + Ko cos(f) [_af —aKf —é){co}

(15)

We emphasize that in order for a grating to
satisfy this equation, the grating direction cannot
be chosen independent of the period, but that they
are strongly connected. This is opposed to our
initial design procedure for polarizers in which the
grating direction was determined freely, and only
the period was subject to restraint. We now apply
Eq. (15) in order to obtain a grating for trans-
forming circularly polarized light into a beam with
an azimuthal angle that varies linearly in the x-
direction. For such an operator, the local grating
direction should be,

ﬁ(x,y) Zax—AW(Ko(an/))~ (16)

We notice that, under the zero-order approxi-
mation that Ay =, = const, this results in the
grating described by Eq. (8). Fig. 8 shows the
experimental azimuthal angle of the beam trans-
mitted through the previously discussed ZnSe
space-variant grating, while illuminated with cir-
cularly polarized light with a wavelength of 10.6
pm. For constant y (i.e. constant period), the azi-
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Fig. 8. Experimental measurement of the polarization of light
transmitted through the ZnSe space-variant polarization state
transformation element, when illuminated with circularly po-
larized light. The arrows indicate the azimuthal angle of the
transmitted beam.

muthal angle varies linearly in the x-direction over
a range of 90°, as expected. However there is also
an unwanted variation of the azimuthal angle in
the y-direction, as the period increases. This is due
to the insufficiency of the zero-order approxima-
tion in describing the dependence of Ay on period.
The insufficiency of this approximation is high-
lighted by Fig. 7(a), which describes a much more
complex dependence of azimuthal angle on period.

The performance of a space-variant subwave-
length grating can be theoretically verified. For
this purpose we present a full space-variant polar-
ization analysis. The method is based on RCWA
and a Jones representation of the grating. We
observe that, the Jones matrix for a subwavelength
grating described by the vector, ﬁg = (2n/A)X is,

- e, O

=% .| (17)

where

I Exx

E, = { 0 } (18a)

and

E, = { 0 ] (18b)
ey

are the complex Jones vectors for the transmitted
fields for incident light, linearly polarized in the x-
direction and in the y-direction respectively. These
fields can be calculated using RCWA, and once the
matrix has been constructed, the Jones vector of
the transmitted field for any incident polarization
can be found as

E.. = JE,. (19)

Furthermore, the Jones matrix for the same
grating rotated at an arbitrary angle f can be
calculated as

jRot :M(ﬁ)jM_l(ﬁ)’ (20)
where

cosffi —sinf
M(p) = [sinﬁ cos f§ ] (21)

is the 2 x 2 rotation matrix. Note, that Jgo is no
longer a diagonal matrix. Applying Eq. (20) to
space-variant elements, in which the period and
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direction vary in the x—y plane, we find that such
operators take the form of,

J(x,y) = M(B(x, »)I(Ax,»))M " (B(x, ),

which is a simple and elegant method for repre-
senting space-variant polarization gratings, en-
abling calculation of the transmitted field for any
arbitrary incident polarization. The Stokes pa-
rameters can then be calculated from the Jones
vector by use of the coherence matrix [21].

Fig. 9 shows cross-sections of the measured and
calculated ellipticity ((a) and (b)) and azimuthal
angle ((c) and (d)) across the GaAs and ZnSe
space-variant elements respectively. The calcula-
tions were done using the method described by Eq.
(22), and the good coincidence between the ex-
perimental results and the calculations confirms
the validity of our Jones calculus based calculation
method. Examination of Fig. 9(a) and (b) shows
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constant ellipticity for constant y, regardless of the
direction of the grating, as expected. Whereas
the azimuthal angle in Fig. 9(c) and (d) follows
straight parallel lines, indicating a linear variation
of 90° across the element, and also highlighting the
variation of the azimuthal angle with period. This
variation can be reduced by higher order solutions
of Eq. (15). By applying a perturbation method to
the solution of Eq. (15), we found that a first-order
correction may simply be obtained by rotating the
element. Numerical simulations using RCWA and
full space-variant polarization analysis based on
Eq. (22), yield an optimal rotation angle of 36° for
the ZnSe and 30° for the GaAs element. Fig. 10
shows the measured and calculated variation of
the azimuthal angle along the x-axis for a small
portion of the ZnSe element when rotated by 36°.
The portion consists of a 5 mm x 0.9 mm strip
with periods from 3 to 4 pm. The graph shows a
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Fig. 9. Experimental and calculated cross-sections of the polarization for circularly polarized light transmitted through the GaAs and
ZnSe space-variant polarization state transformation elements. The graphs show the ellipticity, tan(y), for (a) the GaAs and (b) the
ZnSe elements, as well as the azimuthal angle, ¥, for (c) the GaAs and (d) the ZnSe elements.
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Fig. 10. Measured and calculated azimuthal angle as a function of x-location for some y-coordinates, of the ZnSe space-variant
polarization state transformation element when rotated by 36°. Note that the large values of y, result from the geometry of the revolved

thin strip.

linear variation of the azimuthal angle along the x-
axis and very little variation in the y-direction,
with good agreement between experiment and
calculation. The calculated results revealed an av-
erage deviation of the azimuthal angle from a
linear curve 0.6° and the experimental deviation
was 3.2°. Additionally, taking into account an
average ellipticity of 3.5°, reveals an overall po-
larization purity (percentage of power which is
polarized in the desired direction) of 99.2%. A
similar GaAs element yielded an average ellipticity
of 6° and an overall polarization purity of 98.6%.

4. Concluding remarks

To conclude, we have shown a novel approach
to the design and analysis of space-variant polar-
izing elements using metal stripe gratings, whereby
locally controlling the direction and period of the
grating any desired space-variant manipulation
can be obtained. We have demonstrated the design
of space-variant polarizers and of space-variant
polarization state transformations and have shown
that such manipulators are capable of producing

high polarization purity of over 99%. Further-
more, we have studied metal stripe gratings on
ZnSe and GaAs and found that due to its lower
refractive index, the use of ZnSe substrates results
in a higher PCR, and in a lower ellipticity for the
transmitted beam than those of GaAs. This sug-
gests that future work should focus on the use of
low refractive index substrates, in order to over-
come the limitations posed by the Wood anomaly,
as well as on the realization of more intricate de-
signs.
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