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Abstract

The formation of spiral phase elements producing helical beams with different topological charges is presented. The

elements consist of discrete space-variant subwavelength dielectric gratings. We demonstrate our approach by fabricat-

ing elements for circularly polarized laser radiation with a wavelength of 10.6 lm. The resulting helical phases, as well

as the birefrigent parameters of the element, are measured by analyzing the polarization-dependency of the elements

along with the self-interference characteristics of the emerging beams.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Spiral phase elements are optical components

that produce beams with a helical phase distribu-
tion. Such beams are characterized by a complex

amplitude of the form: u(r,x) � exp(ilx), where r

and x are the radii and azimuth of the polar coor-

dinates, respectively, and l is the topological

charge of the beam. Helical beams have attracted

much interest of late, both in theoretical and

applied terms. This is mainly due to their dark cen-
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tral core and the ability to transfer angular

momentum [1]. For example, helical beams have

been used in optical tweezers for trapping and

transferring angular momentum to microscopic
particles [2–5]. Helical beams have also found

applications in optical transformations [6], fre-

quency shifting [7], and the study of optical vorti-

ces [8]. The formation of helical beams can be

achieved by means of computer-generated holo-

grams [1,2,6,8], programmable liquid crystal dis-

plays [9] and refractive spiral phase elements [10].

Helical beams can also be formed by the insertion
of a spiral phase element directly into a laser cavity

[11]. However, all these methods are either cum-

bersome or have low efficiency.
ed.
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Previously, we had demonstrated the formation

of helical beams with various topological charges

based on the geometrical Pancharatnam phase

[12]. In this case, the phase, which resulted directly

from polarization state manipulation, was
achieved by the use of continuous computer-gener-

ated subwavelength dielectric gratings. However,

applying the constraint on the continuity of the

subwavelength grating led to spatial variations of

the local period. As a result, the elements were re-

stricted in their ability to form sophisticated phase

functions, in addition to being limited in their

physical dimensions. Moreover, the space-varying
periodicity complicated the optimization of the

photolithographic process. Recently, an approach

which overcomes the limitations of the continuous

design has been presented [13,14]. In this tech-

nique, the elements are formed by discretely con-

trolling the local orientation of subwavelength

grating while maintaining uniform periodicity.

The resulting phase modulation is also discrete,
thereby producing elements that are discrete

space-variant dielectric subwavelength gratings

(DSGs). It has been shown that approximating

the desired phase with a sufficient number of dis-

crete levels results in negligible diffraction from

the phase discontinuities [13].

In this paper, we propose the formation of heli-

cal beams with different topological charges by use
of DSGs. The elements were realized on GaAs wa-

fers for circularly polarized CO2 laser radiation

with a wavelength of 10.6 lm. In Section 2, we de-

scribe how the geometrical phase that accompanies

space-variant polarization state manipulation can

be utilized to form helical phase distributions. Sec-

tion 3 is devoted to the design and fabrication of

elements with various topological charges. Experi-
mental verification of their properties is given in

Section 4. The verification was obtained by illumi-

nating the elements with linearly polarized light,

which produced self-interference of the emerging

beam. Both the helical phase structure and the

grating�s birefringent parameters were determined

by analyzing the resulting fringe patterns. The

experiments showed that high quality helical
beams were efficiently formed using thin, light-

weight elements. Finally, concluding remarks are

provided in Section 5.
2. Theory

DSGs can be considered as wave plates with

constant retardation and a space-varying fast

axis. It is convenient to form such space-varying
wave plates using subwavelength gratings. When

the period of grating is smaller than the incident

wavelength, only the zero order is a propagating

order and all other orders are evanescent. In this

case, the grating behaves as a uniaxial crystal

with the optical axes parallel and perpendicular

to the subwavelength grooves [15–17]. Therefore,

by fabricating a subwavelength grating for which
the orientation of the subwavelength grooves is

changed along the face of the element, a space-

variant wave plate can be realized. Insight into

the physical behavior of DSGs can be gained by

performing polarization and phase analysis of

the emerging beams. For this purpose, Jones cal-

culus is a convenient means in the case of fully

polarized incident waves. In this formalism, the
space-invariant subwavelength grating is ex-

pressed by the matrix

J ¼
tx 0

0 tyei/

� �
; ð1Þ

where tx, ty are the real amplitude transmission

coefficients for light polarized perpendicular and
parallel to the grating grooves and / is the

retardation of the grating. If the orientation of

the subwavelength grooves is space-varying, then

the transmission of the subwavelength structure

can be described by the space-dependent

matrix

Tðx; yÞ ¼ M�1ðhÞJMðhÞ; ð2Þ

where h = h(x,y) is the local orientation of the sub-

wavelength grooves and

MðhÞ ¼
cos h sin h

� sin h cos h

� �
ð3Þ

is the two-dimensional rotation matrix. For con-

venience, we represent Jones vectors in the Dirac

bra-ket notation. Let |Einæ denote the polariza-
tion state of a beam incident upon a DSG.

Using Eq. (2), the emerging beam can be calcu-

lated as:



Fig. 1. Illustration of the principle of DSGs, using a Poincaré

sphere. It shows the transformation from a right- to a left-

handed circular polarization state as geodesic paths on the

Poincaré sphere.
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jEouti ¼ TjEini ¼
1

2
ðtx þ tyei/ÞjEini

þ 1

2
ðtx � tyei/Þ ei2hjRihLjEini

�
þ e�i2hjLihRjEini

�
; ð4Þ

where jRi ¼ ð1;�iÞT=
ffiffiffi
2

p
and jLi ¼ ð1; iÞT=

ffiffiffi
2

p
are

right- and left-handed circularly polarized unit

vectors, respectively, and Æajbæ denotes the inner

product. Eq. (4) indicates that the beam emerging
from a DSG comprises three polarization orders.

The first order maintains the original polarization

and phase of the incoming beam. The second is a

right-handed circularly polarized and has a phase

modulation of 2h(x,y). The third order has an

orthogonal polarization direction and an opposite

phase modification with respect to the second

order. Note that the magnitude of the different or-
ders is determined by the local birefringent param-

eters tx, ty and / as well as by the incoming

polarization state, for the |Ræ and |Læ orders. In

the substantial case of tx = ty = 1 and / = p, an

incident beam with |Ræ polarization is subject to

total polarization state conversion that results in

an emerging field of the form:

jEouti ¼ e�i2hðx;yÞjLi: ð5Þ
An important property of Eq. (5) is the phase fac-
tor �2h(x,y), which depends solely on the local

orientation of the grating grooves. This depen-

dency is geometrical in nature and arises from spa-

tial changes in the polarization state of the beam.

It can be illustrated by use of the Poincaré sphere.

This is a unit sphere for which the three normal-

ized Stokes parameters S1/S0, S2/S0 and S3/S0 rep-

resent locations along the rectangular directions,
as depicted in Fig. 1. The incident right-handed

polarized beam and the transmitted left-handed

polarized beams correspond to the north and

south poles of the sphere, respectively. Inasmuch

as the subwavelength grating is space-varying,

the polarization state of the beam at different loca-

tions traverses different paths on the Poincaré

sphere. For instance, the geodesic lines A and B

represent different paths traversed by the polariza-

tion state of the beam when transmitted through

element domains of local orientations h(r, 0) and

h(r,x), respectively. Geometrical calculations

show that the phase difference acquired by the
beam equals half of the area (shaded in the figure)
enclosed by geodesic lines A and B on the sphere

[14,18]. This fact is in compliance with the well-

known rule proposed by Pancharatnam for com-

paring the phases of two light beams with different

polarizations [19] and can be considered an exten-

sion of the rule into the space-domain. Note that

from Eq. (4) it is obvious that for |Læ illumination,

the emerging beam is |Ræ polarized and its phase
modulation is opposite in sign.
3. Design procedure and fabrication process

In our approach, a continuous desired phase

function ud(x,y) is approximated by discrete phase

steps leading to discrete groove orientation. In
compliance with Eq. (5), the connection between

the desired phase and the discrete groove orienta-

tion is given by

hðx; yÞjmodp ¼ �F N ðudðx; yÞÞ=2; ð6Þ
where FN( ) denotes a process that divides the de-

sired phase, ud, into N equal levels. This division

process is depicted in Fig. 2, where the actual
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Fig. 2. Actual discrete phase FN(ud) as a function of the desired

phase ud, along with the discrete local grating orientation. Inset

shows the predicted first order diffraction efficiency as a

function of the number of discrete levels N.

Fig. 3. Magnified geometries of the masks for topological

charges l = 2,3.
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phase, u(x,y) = F(ud(x,y)), is given as a function

of the desired phase as well as the discrete local

groove orientation. In the scalar approximation,

an incident beam is multiplied by the phase func-

tion of the discrete phase element resulting in dif-
fraction of the emerging beam. Quantification of

this diffraction is obtained by Fourier expansion

of the actual phase,

expðiF N ðudÞÞ ¼
X
m

Cm expðimudÞ; ð7Þ

where Cm is the mth order coefficient of the Fou-

rier expansion. The diffraction efficiency, gm, of

the mth diffracted order is given by gm = |Cm|
2.

The first diffraction order represents an exact rep-

lica of the desired phase ud. Consequently, the dif-

fraction efficiency g1 for the first diffracted order is

related to the number of discrete levels N by

g1 ¼
N
p
sin

p
N

� �� 	2
: ð8Þ

This equation indicates that for 2, 4, 8, and 16 dis-

crete phase levels, the diffraction efficiency will be

40.5%, 81.1%, 95.0%, and 98.7%, respectively. This

connection between the first order diffraction
efficiency and the number of discrete levels is also

given in Fig. 2 and was verified experimentally in

[13].

Our objective was to design an element that

when illuminated with |Ræ polarized beam pro-
duced a helical phase distribution. Such an element

can be obtained by requiring that

ud ¼ lx; ð9Þ
and by using Eq. (6) to determine the local sub-

wavelength grating groove orientation. We real-

ized binary chrome masks for l = 1, 2, 3 and 4 by
using high-resolution laser lithography. The ampli-

tude transmission, t(x,y), of the masks is derived

from

tðx; yÞ ¼ U s cos
2p
K

x cos hðx; yÞ þ y sin hðx; yÞð Þ
� ��

� cos pqð Þ
	
; ð10Þ

where K and q are the period and fill factor of the

subwavelength grating, respectively, and Us is the

unit step function defined by

U sðnÞ ¼
1; n P 0;

0; n < 0:



ð11Þ

The masks were 10 mm in diameter and h(x,y)
was found from Eq. (6) with a number of dis-

crete levels N = 16. According to Eq. (8), we ex-

pect more than a 98% diffraction efficiency into

the first order. A subwavelength period of

K = 2 lm was selected together with a fill factor
q = 0.5 for use with CO2 laser radiation with a

10.6 lm wavelength. Fig. 3 shows magnified
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geometries of the masks for topological charges 2

and 3. The masks were transferred by contact

lithography to 500 lm thick GaAs wafers that

were pre-deposited with a 2000 Å layer of SiNx.

The SiNx deposition was achieved by enhanced
chemical vapor deposition (PECVD) at

900 mTorr and 300 �C. At this stage, a 700 Å

Ni adhesion layer was used for the lift-off pro-

cess. Next, the SiNx layer was etched through

the Ni strips, which served as a mask. The etch-

ing was performed by reactive ion etching (RIE)

for 30 s at room temperature with CF4 and O2 at

gas flow rates of 35 and 14 sccm, respectively,
and at a pressure of 80 mTorr. The GaAs was

etched by electron cyclone resonance (ECR) for

about four minutes, with the etched SiNx layer

serving as a mask. The ECR conditions were:

20 sccm of Cl2, 5 sccm of Ar, 75 W RF power

and 600 W microwave power, at 100 �C. The

remaining SiNx was removed using HF acid

resulting in a grating of 5 lm nominal depth.
At this stage, an anti-reflection coating was

deposited on the backside of the element to finish

the fabrication of the desired DSG. Fig. 4(a)

shows a scanning electron microscope (SEM) im-

age of the central part of the l = 3 element. The

area in the center of the element where the pat-

tern is distorted is about 10 lm in diameter,

and therefore can be disregarded. Fig. 4(b) shows
a SEM image of the subwavelength grooves for

l = 4. Note the high aspect ratio (�1/5) and the

rectangular shape of the grooves.
Fig. 4. Scanning electron microscope images of the central parts of
4. Experimental results

The actual phase distribution, u, as well as the
actual local birefringent parameters tx, ty and /
were determined based on the fact that the trans-
mission of the DSG is polarization dependent.

From Eq. (4) it is evident that when a DSG is

illuminated with linearly polarized light, the

emerging beam is the coherent sum of at least

two of the polarization orders. By imaging the

beam through a quarter wave plate followed by

a linear polarizer at different orientations, self-

interference of the polarization orders is ob-
tained. Different combinations of quarter wave

plate and polarizer orientations yield different

fringe patterns. These fringe patterns contain

information about the phase structure of the

beam and the birefringent parameters of the ele-

ments. However, as a Jones vector contains three

independent parameters (the two amplitudes and

the phase retardation between them), it is not
possible to obtain more than three independent

parameters from a single illumination. In our

case, the elements were illuminated with horizon-

tally linear polarized light and with right-handed

circularly polarized light. The Stokes parameters

were used to express the measured quantities

[20]. Although this choice yields an overly deter-

minant set of equations, the calculation itself be-
comes simpler. In terms of circular polarizations,

the Stokes parameters of a monochromatic beam

are given by
the elements having topological charge (a) l = 3, and (b) l = 4.
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S0 ¼ jhRjEij2 þ jhLjEij2;
S1 ¼ hRjEihEjLi þ hLjEihEjRi;
S2 ¼ �iðhRjEihEjLi � hLjEihEjRiÞ;
S3 ¼ jhLjEij2 � jhRjEij2:

ð12Þ

In the most general case, the Jones vectors of the

beams beyond the element for the two illumina-

tions are given by Eq. (4). These Jones vectors

are then used with Eq. (12) to obtain the Stokes

parameters immediately behind the element. In
the case of horizontally linear illumination, we find

SH
0 ¼ A

2
þ B

2
cosðuÞ;

SH
1 ¼ A

4
þ C

2
cosð/Þ þ B

2
cosðuÞ

þ A
4
� C

2
cosð/Þ

� �
cosð2uÞ;

SH
2 ¼ B

2
sinðuÞ þ A

4
� C

2
cosð/Þ

� �
sinð2uÞ;

SH
3 ¼ �C sinð/Þ sinðuÞ;

ð13Þ

where A ¼ t2x þ t2y , B ¼ t2x � t2y , and C = tx ty. For

the right-handed circularly polarized illumination,

the Stokes parameters are given by

SR
0 ¼ A

2
;

SR
1 ¼ 1

2
B cosðuÞ � 2C sinð/Þ sinðuÞ½ �;

SR
2 ¼ 1

2
B sinðuÞ þ 2C sinð/Þ cosðuÞ½ �;

SR
3 ¼ �C sinð/Þ:

ð14Þ

The terms depending on twice the actual phase, u,
are dominant in Eq. (13), in the current case of

interest (tx � ty � 1,/ � p). We therefore find, by

use of Eqs. (13) and (14),

cosð2uÞ ¼ 1� 2
SH
0 � SH

1

SR
0 þ SR

3

: ð15Þ

The parameters A and B are found from

A ¼ 2SR
0 ; B ¼ 2SH

0 � A
cosðuÞ : ð16Þ

We avoid an explicit calculation of u by using the

well-known trigonometric identity, cosðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cosð2uÞÞ=2

p
. Moreover, the birefringent

parameters are found from

tx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B
2

r
; ty ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
A� B
2

r
; cosð/Þ ¼ �2SR

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p :

ð17Þ

Eqs. (15)–(17) enable simple measurement of the

phase modification and the birefringent parame-

ters of a DSG. The measurements were carried
out by illuminating the DSG with suitably pre-

pared CO2 laser radiation. The emerging beams

were imaged onto a two-dimensional pyroelectric

detection array (Spiricon Pyrocam III camera)

through a quarter wave plate followed by a pola-

rizer. The Stokes parameters for the different illu-

minations were calculated from the measured

intensities by the following expressions:

S0 ¼ I45;0 þ I�45;0;

S1 ¼ 2I0;0 � S0;

S2 ¼ 2I45;45 � S0;

S3 ¼ I45;0 � I�45;0;

ð18Þ

where Ia,b represents the measured intensity ob-

tained with the quarter wave plate oriented at

an angle a followed by a polarizer oriented at

an angle b. In addition, the measurements were

normalized by the incoming intensity in order
to prevent non-uniformity of the incoming beam

from affecting the results. This method for

obtaining the Stokes parameters is known as

the four-measurement technique [21]. Fig. 5

shows the experimental results of I45,45 and I45,0
for horizontally linear polarized illumination as

well as SH
1 by use of Eq. (18). The fringes demon-

strate the self-interference of the emerging beam.
The I45,0 term corresponds to the amount of the

left-handed circular polarization within the

emerging beam. In the ideal case, for which

tx = ty = 1 and / = p, this term becomes uni-

formly distributed as evident from Eq. (4). There-

fore, the modulation observed in Fig. 5(b) is a

result of the imperfections in tx, ty and /, indicat-
ing the existence of the first polarization order.
The measured phase distribution, obtained from

Eq. (15), for beam with topological charge 1 is

shown in Fig. 5(d). The typical standard devia-

tion (STD) of the phase fronts from their desired



Fig. 5. The experimental self-interference patterns obtained for horizontally linear polarized illumination of DSGs with l = 1–4, with a

quarter wave plate oriented at 45� and a polarizer oriented at 45� in (a) and 0� in (b). The measured SH
1 is shown in (c). (d) The

measured phase distribution of the beam with l = 1.
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value was 2.5%, indicating that high quality spir-
al phase distributions had been formed. For the

local grating coefficients, tx, ty and /, typical val-
ues of 0.86, 0.74 and 0.97p with STD of about

10% were obtained, respectively, by use of Eqs.

(16) and (17). These values are close to the theo-

retical predictions achieved by a rigorous cou-

pled-wave analysis utilizing the measured

profiles of the gratings.
Sometimes, the far-field image of the helical

beam is the desired feature. This far-field is charac-
terized by a doughnut-shaped intensity pattern
that results from the phase singularity at the center

of the beam. In Fig. 6 the far-field intensity pat-

terns for the various topological charges are pre-

sented. The images were obtained at the focus of

a 500 mm focal length lens. Also shown in Fig. 6

are the typical cross-sections and the correspond-

ing theoretical predictions. Note that for the

higher topological charges, a deviation from the
theoretical prediction appears as a bright central

spot. We measured this bright spot to be orthogo-



Fig. 6. Experimental far-field images (a), and their calculated (solid lines) and measured (crosses) cross-sections (b), for the helical

beams with l = 1–4 emerging from the DSGs for right-handed circular polarized illumination.
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nally polarized with respect to the doughnut-

shaped intensity. This indicates that the central

spot can be attributed to the first polarization or-

der of Eq. (4). Using the measured values for tx,

ty and / we calculated this residual intensity to

be 0.85% of the overall transmitted intensity. We
measured the central spot intensity as 1% of the

overall intensity, in agreement with our predic-

tions. The central spot can be easily removed by

transmitting the beams through a suitably pre-

pared circular polarizer. A circular polarizer is

an apparatus composed of a quarter wave plate

oriented at ±45� followed by a linear polarizer at

0�. The orientation of the plate determines whether
a left- or right-handed circular polarization is

transmitted by the apparatus. Fig. 7 shows the

measured intensity patterns and cross-sections
Fig. 7. Experimental far-field images (a), and their calculated (solid

beams with l = 1–4 emerging from the DSGs for right-handed circula

through a left-handed circular polarizer.
for the beams transmitted through a circular pola-

rizer designed to transmit left-handed circularly

polarized light. Also note in Fig. 6 that the inten-

sity pattern for l = 2 is somewhat elongated, for

l = 3 it is somewhat triangular and for l = 4 the

intensity pattern is somewhat of rectangular shape.
This is due to some anisotropic behavior of the

etching process that resulted in systematic changes

in the grating parameters. These imperfections are

partially removed by the circular polarizer, as can

be seen from the relatively symmetric and uniform

doughnut-shaped images of Fig. 7.

Actually, the geometrical phase modification is

determined by the space-variant groove orienta-
tion. Therefore, the optical quality of the hybrid

element, composed of a DSG and a circular pola-

rizer, is mainly determined by the extinction ratio
lines) and measured (crosses) cross-sections (b), for the helical

r polarized illumination. The emerging beams were transmitted
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of the circular polarizer as well as the number of

discrete levels N. The difficulty in accurately con-

trolling the groove shape by use of the lithographic

process merely determines the overall transmission

of the element. This is due to the dependency of
the birefringent parameters, tx, ty and /, on the

profile of the grooves. Consequently, from Eq.

(4) we find that the deviation in the desired param-

eters (tx = ty = 1 and / = p) results in intensity

transfer from the desired polarization order into

the first polarization order. The experimental er-

rors in the birefringent parameters have no effect

on the phase of the desired polarization and we
have demonstrated in the experiment that the cir-

cular polarizer can be used to remove any residual

intensity.
5. Conclusions

To conclude, we have demonstrated that spiral
phase elements can be realized by computer-gener-

ated space-variant subwavelength gratings. The

elements are thin, lightweight and highly efficient.

The derived phase of the DSG was not a result

of optical path differences, but solely due to local

changes in polarization, which was in fact, a man-

ifestation of the geometrical space-domain Panch-

aratnam phase. Several advantages were found in
using DSGs over conventional kinoform diffrac-

tive optical elements or refractive optics. The

phase modification of a DSG depends only on

the local orientation of the subwavelength grooves

rather than on the groove�s shape and depth. In a

standard lithographic process, the groove orienta-

tion is a fairly robust quantity, while the three-

dimensional profile of the grooves is highly sensi-
tive to the specific process applied. Therefore, by

use of DSGs, it enables to obtain accurate complex

phases with a single mask process, and ensures

high repeatability of optical performance. Also, a

hybrid element composed of a DSG and a circular

polarizer yields an achromatic phase element,

although with some intensity loss for wavelengths

different from the nominal value [22]. This inten-
sity loss is due to the wavelength dependency of

the birefringent parameters. Furthermore, DSGs

are polarization-dependent and thus enables to ob-
tain multipurpose elements [23]. Finally, the use of

standard lithographic processes makes the ele-

ments inherently suitable for the large-scale inte-

gration of optical components.
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