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Self-imaging of a periodic space-variant polarized field is demonstrated. The field is created by use of
space-variant subwavelength dielectric gratings. Our observations include self-imaging of the fields at
the Talbot planes as well as the translation of incident polarization variation into intensity modulation
at certain planes. We demonstrate the formation of a one-dimensional nondiffracting beam with uni-
form intensity and a nontrivial polarization structure. © 2002 Optical Society of America
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1. Introduction

The Talbot effect is a well-known interference phe-
nomenon in which coherent illumination of a periodic
structure gives rise to a series of self-images at well-
defined planes.1 This effect has many applications
to fields such as wave-front sensing,2 spectrometry,3
and Talbot laser resonators.4 Although most stud-
ies of the Talbot effect relate to waves for which the
polarization is uniform, several contemporary papers
have dealt with the Talbot effect in fields with space-
variant �transversely inhomogeneous� polariza-
tion.5,6 However, the experimental discussions were
usually limited to simple binary anisotropic gratings
or other discontinuous polarization distributions.

Recently we demonstrated the formation of contin-
uous space-variant polarized fields by using computer-
generated subwavelength dielectric gratings. By
correctly controlling the local orientation and period-
icity of the grating, one can achieve any desired space-
variant polarization.7 Furthermore, we showed that
such polarization manipulations are necessarily ac-
companied by a space-variant phase manipulation of
geometrical origin8 that can be utilized for the forma-
tion of novel polarization-dependent phase elements,
which we call Pancharatnam–Berry phase optical
elements.9
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In this paper we demonstrate a Talbot effect involv-
ing a unique type of polarization-diffraction grating
that comprises a periodic space-variant wave plate for
which the orientation of the fast axis varies linearly in
the x direction. We show that for any incident polar-
ization the resultant field undergoes self-imaging and
fractional Talbot effects that involve polarization, in-
tensity, and phase. We present a theoretical analysis
of the phenomenon and experimentally demonstrate
the effect, using a continuous space-variant subwave-
length dielectric structure designed for CO2 laser ra-
diation at a wavelength of 10.6 �m. Furthermore, we
show that the Talbot effect for incident circular polar-
ization yields a one-dimensional, nondiffracting beam
that conserves its space-varying polarization and uni-
form intensity as it propagates.

2. Theory

Figure 1�a� is a schematic representation of a periodic
space-variant wave plate for which the orientation of
the fast axis, �, varies linearly in the x direction to
form a polarization-diffraction grating with grating
period d, which is larger than the wavelength of the
incident wave, ���x, y� � ��x�d��mod��. When a plane
wave with uniform polarization is incident upon such
a space-varying wave plate the transmitted field will
be periodic in both polarization and phase, and there-
fore we can expect this field to undergo Talbot self-
imaging involving both polarization and phase at the
appropriate planes.

Space-varying wave plates such as the one discussed
above can be fabricated by use of subwavelength di-
electric quasi-periodic structures. When the period of
a subwavelength periodic structure is much smaller
than the incident wavelength, only the zeroth order is
a propagating order, and all other orders are evanes-



cent. The subwavelength periodic structure behaves
as a uniaxial crystal with the optical axes parallel and
perpendicular to the subwavelength grooves. There-
fore, by use of space-variant subwavelength quasi-
periodic structures for which the local period and
direction of the grooves vary continuously, space-
variant wave plates can be designed. The local direc-
tion of the grooves controls the orientation of the wave
plate, whereas the period, the depth, and the profile of
the grooves control the retardation.7

Figure 1�b� demonstrates the geometry of a space-
variant subwavelength structure designed to act as
the wave plate illustrated in Fig. 1�a�. The figure
shows a continuous quasi-periodic subwavelength
structure with local subwavelength period 	�x, y�
and with grooves oriented perpendicularly to the re-
quired fast axis. The local subwavelength periodic-
ity gives the structure its birefringence, whereas the
continuity of the subwavelength grooves ensures the
continuity of the resultant field. Furthermore, we
note the space-varying nature of 	�x, y�. As we
show in Section 3, the varied local subwavelength
period is a necessary result of the requirement for
continuity imposed on the subwavelength grooves.

It is convenient to describe space-variant subwave-
length dielectric structures such as the one depicted
in Fig. 1 by use of Jones calculus. In this represen-
tation a uniform subwavelength structure for which
the grooves are oriented parallel to the y axis ���x, y�
� 0� can be represented by the matrix

J � �1 0
0 ei
� , (1)

where 
 is the retardation of the subwavelength
structure. If the orientation of the subwavelength
grooves is space variant, i.e., different at each loca-
tion, then the grating can be described by the space-
dependent matrix

TC� x, y� � M��� x, y��JM�1��� x, y��, (2)

where ��x, y� is the local orientation of the grooves
and

M��� � �cos � �sin �
sin � cos � �

is a two-dimensional rotation matrix. For conve-
nience we adopt Dirac bra–ket notation and convert
TC�x, y� to a helicity base in which

�R� � �1
0� , �L� � �0

1�
are the two-component unit vectors for right-hand and
left-hand circularly polarized light, respectively. In
this base the space-variant subwavelength structure is
described by the matrix T�x, y� � UTCU�1, where

U �
1

�2
�1 i

1 �i�
is a unitary conversion matrix. Explicit calculation
of T�x, y� yields

T� x, y� � cos



2 �1 0
0 1�

�i sin



2 � 0
exp�i2�� x, y��

exp��i2�� x, y��
0 � .

(3)

Consequently the Jones matrix that describes the
element in Fig. 1 for which the local orientation of the
subwavelength grooves is ��x, y� � �x�d�mod� has the
explicit form

T� x, y� � cos



2 �1 0
0 1�

�i sin



2 � 0
exp�i2�x�d�

exp��i2�x�d�
0 � ,

(4)

where we have assumed that the retardation 
 does
not depend on 	�x, y�. We previously showed that
this assumption holds as long as 	�x, y� does not ex-
ceed 
�n,7 where 
 is the incident wavelength and n is
the refractive index of the dielectric substrate upon
which the structure is fabricated. Thus when a plane
wave with arbitrary uniform polarization �Ein� is inci-
dent upon the element of Fig. 1 the resultant field is

�Eout� x, z � 0��

� cos



2
�Ein� � i sin




2
��L�L�exp��i2�x�d�

� �R�R�exp�i2�x�d��, (5)

Fig. 1. �a� Space-varying polarization diffraction grating consist-
ing of a periodic wave plate with a spatially rotating fast axis in the
x direction. The period of the diffraction grating is d. Filled
arrows show the local fast axis, whereas open arrows show the
local slow axis. �b� Geometry of a space-variant subwavelength
dielectric structure designed to act as the space-variant wave plate
depicted in �a�. Bottom left, scanning-electron microscope image
of the subwavelength structure; bottom right, magnification of a
region on the grating, demonstrating local subwavelength period
	�x, y�, local grating orientation ��x, y�, and local subwavelength
grating vector Kg�x, y�.
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where �L � �Ein�R� and �R � �Ein�L� and where �����
denotes an inner product. Figure 2 illustrates this
result. When a uniformly polarized beam is incident
upon the polarization grating, the resultant beam,
�Eout�x, z��, has three components: a zero order that
maintains the original polarization and diffracted or-
ders with �R� and �L� polarization. At each point the
diffracted orders undergo phase modification equal to
twice the angle of local orientation of the subwave-
length grooves, and the phase of the �R� component is
opposite in sign to the phase of the �L� component.
Consequently the �R� and �L� polarized components
are diffracted in opposite senses. The angle of dif-
fraction is determined by the polarization grating pe-
riod d. It should be noted that the phase
modification of the diffracted orders results solely
from local changes in polarization and is geometrical in
nature.8,9 We therefore denote it as the diffracted
geometrical phase. Because the diffracted geometri-
cal phases for both the �L� and the �R� diffracted orders
have period d, we can expect Talbot self-imaging of
each of these components at the same Talbot planes,
resulting in a reconstruction of the field.

To prove that �Eout� undergoes self-imaging we cal-
culate the propagation of each of the diffracted or-
ders, using the Fresnel approximation,10 to find that

�Eout� x, z�� � �cos



2
�Ein�

� i sin



2 ��L�L�exp��
i2�x

d
�

i�
z
d2 �

� �R�R�exp�i2�x
d

�
i�
z

d2 ��	
� exp�i2�z


 � , (6)

from which we find that �Eout�x, z � 0�� � �Eout�x, z �
mZT��, where z � 0 corresponds to the plane just after
the grating, ZT � 2d2�
 is the Talbot distance, and m
is an integer. The result of this calculation proves
that �Eout�x, z � 0�� is reconstructed at the Talbot
planes. Further analysis shows that �Eout�x, z �

ZT�2�� � �Eout�x � d�2, z � 0��. Thus, at half of the
Talbot distance, the field is shifted in the x direction
by half of a period relative to the field at z � 0,
demonstrating a fractional Talbot effect. We can ex-
pect additional interesting effects at other fractional
Talbot planes.

3. Realization and Experimental Results

To design a subwavelength structure with continuous
subwavelength grooves, such as the one depicted in
Fig. 1, we define a subwavelength grating vector Kg �
K0�x, y��cos���x, y�� x̂ � sin���x, y�� ŷ�.11 Here x̂ and ŷ
are unit vectors in the x and y directions, K0 � 2��
	�x, y� is the spatial frequency of the local subwave-
length structure, and ��x, y� is the space-variant
direction of the vector, defined such that it is perpen-
dicular to the subwavelength grooves at each point.
The geometrical parameters of Kg are shown in Fig.
1 �bottom right�. To ensure the continuity of the
subwavelength grooves we require that � � Kg � 0,
from which 	�x, y� is determined. Once the equa-
tion has been solved, we calculate the grating func-
tion 
g �defined such that �
g � Kg� by integrating
Kg over an arbitrary path to yield 
g�x, y� � �2d�
	0�sin��x�d�exp���y�d�, where 	0 is the subwave-
length period of the structure at y � 0. Figure 1�b�
is a Lee-type binary structure11 described by the grat-
ing function 
g.

We deposited the structure for CO2 laser radiation
with a wavelength of 10.6 �m onto a GaAs wafer,
with 	0 � 2 �m and d � 2.5 mm. We formed the
structure with a maximum local subwavelength pe-
riod of 
�n � 3.24 �m �n � 3.27 for GaAs�. The
length of the element in the x direction, l, was 30 mm;
i.e., l � 12d. First we fabricated a chrome mask of
the structure, using high-resolution laser lithogra-
phy. The pattern was then transferred by photoli-
thography to a 500-�m-thick GaAs wafer, after which
we etched the structure by using electron cyclotron
resonance with BCl3 for 35 min. A scanning-
electron microscope image of the subwavelength
grooves is shown at the bottom left in Fig. 1. The
structure yielded an effective space-variant wave
plate with a measured local retardation of 
 � 65°.

Following fabrication of the structure we illumi-
nated it with linearly polarized light and measured
the Stokes parameters12 at various planes along the
z-axis, using the four-measurement technique.13

Figure 3 shows experimentally measured images of
�Fig. 3�a�� the intensity measured at planes z � 0, z �
ZT�4, z � ZT�2, and z � ZT as well as �Fig. 3�b�� the
measured and predicted Stokes parameters at these
planes and �Fig. 3�c�� illustrations of the space-
variant polarization ellipses at each plane. The ex-
perimental results agree with the predictions. At
z � 0 just after the grating, the polarization varies
periodically and continuously in the x direction from
linear polarization to nearly circular polarization,
and the intensity is constant. This field is recon-
structed at z � ZT, thereby demonstrating the Talbot
effect. At the plane z � ZT�2 we observe the shifted
field as predicted from Eq. �6�. A fractional Talbot

Fig. 2. Diffraction from the structure in Fig. 1. The Talbot effect
occurs in the region where the diffracted orders overlap �the
striped region�.
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effect is demonstrated at z � ZT�4. At this plane a
clear periodic variation in intensity is observable.
Although the polarization at this plane is space vary-
ing, the ellipticity is zero and the beam is linearly
polarized at all points. Further analysis of Eq. �6�
shows that the visibility of the fringes at z � ZT�4 is
equal to �1 � �S3

in�2�1�2 sin 
 �S3
in is the third Stokes

parameter of the incident beam�, thereby providing a
tool for characterization of the polarization of the
incident beam.

A case of special interest occurs when �Ein� � �R�.
Based on Eq. �5�, the resultant beam for this case
is

�Eout��cos



2
�R� � i sin




2
�L�exp��i2�x�d�. (7)

Consequently �Eout�x, z�� comprises a zero order with
�R� polarization and a single diffracted order with �L�
polarization. Calculation of the Stokes parameters
for this beam yields

S0� x, z� � 1,

S1� x, z� � �sin 
 sin�2�x�d � �
z�d2�,

S2� x, z� � sin 
 cos�2�x�d � �
z�d2�,

S3 � cos 
. (8)

The local ellipticity � and azimuthal angle � of the
beam can be calculated from Eqs. �8� as13

� � 1⁄2 sin�1�S3�S0� � 
�2 � ��4,

� � 1⁄2 tan�1�S2�S1� � �x�d � �
z�2d2 � ��4.
(9)

The beam exhibits constant intensity and space-
variant polarization in the entire object space. The
ellipticity is constant and depends on the retardation
of the wave plate, whereas the azimuthal angle varies

Fig. 3. �a� Measured intensity at planes z � 0, z � ZT�4, z � ZT�2, and z � ZT for linear incident polarization. �b� Measured and
predicted Stokes parameters and �c� illustration of the space-variant polarization ellipse at these planes.

Fig. 4. Measured and predicted azimuthal angles when circular
polarization is incident upon the polarization diffraction grating of
Fig. 1 at planes z � 0, z � ZT�4, z � ZT�2, and z � ZT.
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linearly in the x direction. The polarization shifts in
the x direction as the beam progresses, and the field
is exactly reconstructed at z � ZT. Figure 4 shows
the experimental measurement of the azimuthal an-
gle at various planes as well as the predicted results.
The experiment is in good agreement with the theory,
and we note the shifting polarization as the beam
progresses.

The lateral shift in polarization can be canceled if
we assume off-axis circularly polarized illumination
of the grating at a small angle, sin � � 
�2d. Using
Eqs. �5� and �6� and approximating sin � � �, we find
that the resultant field when 
 � ��2 is

�Eout� x,z�� � ��cos�2�x�d � ��4� x̂ � sin�2�x�d

� ��4� ŷ�exp�i�2�z�
 � ��4��,

where x̂ and ŷ are Cartesian unit vectors transverse
to the direction of propagation. The resultant beam
has uniform intensity and a constant space-variant
polarization that is retained throughout its propaga-
tion. The beam is essentially a one-dimensional vec-
torial nondiffracting beam that is analogous to a
scalar nondiffracting cosine beam. However, the
uniqueness of our solution lies in its space-varying
polarization and uniform intensity, which make it
better suited for applications such as metrology and
three-dimensional scanning. Results that relate to
the nondiffracting structure of the beam still hold
when 
 � ��2.

To conclude, we have demonstrated Talbot effects
that involve a space-variant polarized field by using
subwavelength dielectric structures. We believe
that these effects can be applied to the improvement
of many existing Talbot-effect-based applications and
point the way to the use of some novel ideas.
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