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Formation of linearly polarized light with axial symmetry by
use of space-variant subwavelength gratings
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We present a novel method for forming linearly polarized axially symmetric beams with various polarization
orders that is based on computer-generated space-variant subwavelength gratings. We introduce and experi-
mentally demonstrate that our space-variant polarization state manipulations are accompanied by a phase
modification of a helical structure that results from the Pancharatnam–Berry phase. We have verified the
polarization properties of our gratings for laser radiation at 10.6-mm wavelength. © 2003 Optical Society of
America
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Recent years have witnessed a growing interest in
beams of a transversally space-variant polarization
state. One of the most interesting types of such
beams is the linearly polarized axially symmetric
beam (LPASB). LPASBs are characterized by their
polarization orientation, c�v� � mv 1 c0, where m
is the polarization order, v is the azimuthal angle
of the polar coordinate system, and c0 is the initial
polarization orientation for v � 0. Figure 1(a) il-
lustrates LPASBs of polarization order m � 1 and
m � 2. Note that a LPASB has a singular of its
polarization state at the beam axis and, therefore,
has a vectorial vortexlike structure. The most widely
known members of the LPASB family are radial
(m � 1, c0 � 0) and azimuthal (m � 1, c0 � p�2)
beams, which are used extensively in applications
such as particle acceleration, atom trapping, optical
tweezers,1 material processing, and tight focusing.
Both radial and azimuthal beams can be formed by
use of such methods as interferometric techniques
and the intracavity summation of two orthogonally
polarized TEM01 modes.2 Recently the formation of
higher polarization order LPASBs was demonstrated
with liquid-crystal devices.3,4 However, all these
methods are somewhat cumbersome or unstable or
have low eff iciency.

We recently demonstrated the use of space-variant
subwavelength gratings for the formation of radial
and azimuthal beams.5 – 7 In this Letter we present
a novel design and fabrication procedure that allows
computer-generated space-variant subwavelength
dielectric gratings to be used to transform circularly
polarized light into LPASBs that have, for the f irst
time to our knowledge, any multiple of a half-integer
polarization order. The continuity of our gratings
ensures the continuity of the transmitted field, thus
suppressing diffraction effects that may arise from
discontinuity. Our space-variant polarization state
manipulations are accompanied by a phase modif i-
cation of a helical structure that results from the
Pancharatnam–Berry phase. We also show that
formation of a continuous half-integer polarization
order LPASB must be accompanied by a Pancharat-
nam phase and that a beam with a Pancharatnam
phase of any polarization order does not maintain its
polarization state during propagation. We support
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our discussion with experimental results for CO2 laser
radiation at a wavelength of 10.6 mm. Finally, we
demonstrate that a topological Pancharatnam charge
can be defined for these beams and for its relation to
the beams’ angular momentum.

Subwavelength gratings have opened new methods
for forming beams with sophisticated phase and polar-
ization distributions. When the period of a grating is
sufficiently smaller than the incident wavelength, only
the zeroth order is a propagating order. Such gratings
behave as layers of a uniaxial crystal.8 Therefore, by
using space-variant subwavelength gratings we can
generate complex vectorial wave fronts with a different
polarization state at each location. Two conditions
have to be met if we wish to convert circularly polarized
light into a LPASB by using subwavelength gratings.
The first is conversion of the circularly polarized light
into linearly polarized light by inducing p�2 retarda-
tion on the incident wave. The second is creation of
the proper local polarization direction. Choosing the
correct shape and form for the subwavelength grooves
fulfills the first condition, whereas the second is met
by creation of a local groove orientation of the form
u�v� � c�v� 2 p�4 � mv 1 c0 2 p�4.

An axially symmetric space-variant subwavelength
grating is typically described by a grating vector
of the form Kg�r,v� � K0�r, v� �cos�u�r,v� 2 v�r̂ 1

sin�u�r,v� 2 v�v̂�, where r̂ and v̂ are unit vectors in
polar coordinates [Fig. 1(b)] and K0�r� � 2p�L�r,v�
is the local spatial frequency for a grating of local
period L�r,v�. Next, to ensure the continuity of the
grating, we require that = 3 Kg � 0, resulting in a
differential equation that can be solved to yield the
local grating period. The solution to this problem

Fig. 1. (a) Illustration of linearly polarized light with
axial symmetry and different polarization orders; (b) the
geometrical def inition of the grating vector. Inset,
scanning electron microscope image of a typical cross
section of the grating profile.
© 2003 Optical Society of America
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yields K0�r� � �2p�L0� �r0�r�m, where L0 is the local
subwavelength period at r � r0. Integrating Kg over
an arbitrary path yields the desired grating function
(defined such that =fg � Kg) as

fg�r,v� � 2pr0�r0�r�m21 sin��m 2 1�v 1 c0

23p�4����m 2 1�L0�, m fi 1 ,

fg�r,v� � �2pr0�L0� �ln�r�r0�cos�c0 2 p�4�

1v sin�c0 2 p�4��, m � 1 .

We then achieved Lee-type binary grating functions9

for m � 1/2, 1, 11/2, 2 and c0 � p�4. The gratings were
fabricated for CO2 laser radiation with a wavelength
of 10.6 mm with L0 � 2 mm, r0 � 4.7 mm, and a
maximum radius of 6 mm. We formed the gratings
with a maximum local period of 3.2 mm so we would
not exceed the Wood anomaly of GaAs. A magnified
geometry of the gratings is presented in Fig. 2 for
several polarization orders. The elements were fab-
ricated upon 500-mm-thick GaAs wafers by contact
photolithography and electron-cyclotron resonance
etching with BCl3 to a nominal depth of 2.5 mm,
which resulted in measured values of retardation
f � 0.4p and amplitude transmission coefficients
of tx � 0.88 and ty � 0.77. These values are close
to the theoretical predictions achieved by rigorous
coupled-wave analysis. After the fabrication, an
antiref lection coating was applied to the backside of
the element. The inset of Fig. 1 shows a scanning
electron microscope image of a typical cross section of
the grating profile.

Following the fabrication we illuminated the grat-
ings with right-hand circularly polarized light at a
wavelength of 10.6 mm from a CO2 laser, imaged the
emerging beam onto a Spiricon Pyrocam III infrared
camera, and performed a full beam polarization
characterization by measuring the Stokes parameters
(S0 S3) at each point, using the four-measurements
technique.10 Figure 3(a) shows the f irst measure-
ment, which is simply an image obtained by use of a
linear polarizer as an analyzer. Note that for each
beam the polarization state repeats itself 2m times.
Figure 3(b) shows measured local azimuthal angle c
of the resultant beams as predicted, indicating good
control of the polarization direction when our method
is used for various polarization orders. We found an
average experimental deviation of c from the desired
azimuthal angle of 0.3± and an average ellipticity
tan�x� of 0.09, which we associate with a deviation of
the retardation phase of the gratings from p�2 and
with a fabrication error.

We gained additional insight by performing po-
larization and phase analyses of the elements. By
representing the element as a space-variant Jones
matrix, one can find the resultant wave front for
any incident polarization.6 For a space-varying
quarter-wave plate and incident right-hand circular
polarization, the Jones vector of the resultant beam
is Eout�r,v� � �cos�mv 1 c0�, sin�mv 1 c0��T 3

exp�2i�mv 1 c0��. From here we can calculate the
space-variant Pancharatnam phase11 of the transmit-
ted beam as wP � arg�E�r,v�,E�r, 0�	. In our case,
the calculation of the Pancharatnam phase yields
wP � arg�cos�mv 1 c0�� 2 mv. This phase modif ica-
tion results solely from the polarization manipulation
and is purely geometrical in nature.12 The beam
displays a Pancharatnam phase ramp of helical struc-
ture, similar to those found in scalar optical vortices;
therefore we define the topological Pancharatnam
charge of the beam as lP � �1�2p�

H
=wPds � 2m.

Note that in our case the Pancharatnam charge and
the polarization order are equal in magnitude and
opposite in sign. This charge can be modified by
transmission of the beam through a spiral phase ele-
ment of the form exp�ildv� (ld is an integer), in which
case a topological charge of ld is added to the beam.

Figures 4(a) and 4(c) show the calculated real parts
of the instantaneous fields of LPASBs. Figure 4(a)
shows the f ields of the beams that are formed by

Fig. 2. Magnified geometry of the subwavelength grat-
ings for polarization orders m � 1/2, 1, 11/2, 2.

Fig. 3. (a) Experimental intensity distributions, directly
after the gratings of different polarization orders, of the
beams emerging from a linear polarizer as an analyzer;
(b) measured local azimuthal angles of the beams.

Fig. 4. Calculated real parts of the instantaneous vec-
tor f ields for beams (a) emerging from the gratings only
and (c) with the additional spiral phase element ld � m.
(b), (d) Experimental far-field images for the beams and
their calculated (solid curves) and measured (f illed circles)
cross sections [(b) corresponds to (a), whereas (d) corre-
sponds to (c)].
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use of the gratings only for m � 1/2, 1, 11/2, 2 and
c0 � p�4, whereas Fig. 4(c) shows the beams that are
created when, in addition to the grating, the waves
of Fig. 4(a) are also transmitted through spiral phase
elements that bear topological charge ld � m, result-
ing in cancellation of the Pancharatnam phase while
both the same space-variant polarization directions
and the same polarization order m are maintained.
Such beams are described by a Jones vector of the
form �cos�mv 1 c0�, sin�mv 1 c0��T . We define
this polarization as being out of phase for which no
phase modif ication has been introduced. When the
polarization order is a half-integer (i.e., m � 1/2, 11/2),
the f ields of the beams that have a Pancharatnam
phase [Fig. 4(a)] are continuous, whereas the f ields
of Fig. 4(c) without the Pancharatnam phase are
discontinuous. It is evident that the formation of
continuous LPASBs with half-integer polarization
order is possible only for beams that have a topological
Pancharatnam charge.

Although the corresponding beams of Fig. 4(a)
and Fig. 4(c) of the same polarization order possess
identical space-variant polarization directions, these
consist of different phases, and it can be expected
that they will propagate differently, producing dis-
tinguishable far-field images. Figure 4 shows also
the experimental far-field images of these f ields
in their respective order [Fig. 4(b) corresponds to
Fig. 4(a); Fig. 4(d) corresponds to Fig. 4(c)] as well
as the calculated and measured cross sections. The
beams transmitted through our subwavelength grat-
ings of various polarization orders are converted into
out-of-phase polarizations that have zero topological
Pancharatnam charge by use of spiral phase elements
formed by 32-level reactive-ion etching of ZnSe sub-
strates. We note that the beams emerging through
our gratings only [Fig. 4(b)] exhibit far-field images
with bright centers, whereas the beams that undergo
cancellation of the Pancharatnam phase exhibit dis-
tinct far-field images with dark centers [Fig. 4(d)].
There is a close connection between the instantaneous
electric f ield [Figs. 4(a) and 4(c)] and the appearance
of a bright or a dark spot at the far-field image of
the beams. When the sum of the real part of the
instantaneous electric field about the beam axis is
zero, Re�

R2p

0 E�v� dv� � �0, 0�T , a dark spot at the far
field is obtained and vice versa. The experimental
results indicate that LPASBs with identical polar-
ization orders and different Pancharatnam phases
propagate in different manners, thereby emphasizing
the relevance of correct phase determination in the
propagation of space-variant polarization beams. We
can easily explain the way in which the Pancharat-
nam phase inf luences the free propagation of the
beam by expressing the beam as the coherent sum of
two orthogonally polarized components with circular
polarization. In the general case in which the spiral
phase element is present, this decomposition yields

Eout � 1/2����1,2i�T exp�ildv�

1 �1, i�T exp�2i��2m 2 ld�v 1 2c0����� .
When ld � 0 (no phase element) the beam consists
of a scalar wave with a topological charge of 22m
and a wave with zero topological charge. The wave
with charge 22m conserves its vortex, whereas the
wave with zero charge collapses and brings about the
bright center. The process in which one scalar wave
maintains its vortex while the other collapses changes
the polarization state of the beam, and therefore
LPASBs with Pancharatnam phase do not maintain
their polarization state during propagation. When
we apply the same logic to the waves that undergo
a cancellation of the Pancharatnam phase (ld � m),
we f ind that the waves consist of two scalar vortices
with topological charges m and 2m. Neither of the
two vortices collapses; consequently the dark spot is
retained. Furthermore, the two scalar waves diffract
in a similar manner and therefore LPASBs with zero
Pancharatnam phase maintain their polarization state
during propagation, as was experimentally verified
for LPASBs of polarization orders m � 1, 2.

Another point of interest is the angular momentum
of such beams. For a scalar wave, the angular momen-
tum in the direction of propagation per unit energy is
given by JZ � �l 1 s���2pv�,1 where l is the topological
charge, s is the helicity (61 for circular polarization),
and v is the optical frequency of the beam. Using this
rule and the decomposition of Eout into circular polar-
ization states yields the angular momentum of LPASBs
as JZ � 1/2

X
i�L,R �li 1 si���2pv� � �ld 2 m���2pv� �

lp��2pv�, where L and R indicate components with left
and right circular polarization, respectively, and the
angular momentum of these waves is given by the topo-
logical Pancharatnam charge. Our result introduces a
connection between angular momentum and topologi-
cal Pancharatnam charge.

E. Hasman’s e-mail address is mehasman@tx.
technion.ac.il.
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