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Pancharatnam–Berry phase in space-variant polarization-state
manipulations with subwavelength gratings
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We report the appearance of a geometrical phase in space-variant polarization-state manipulations. This
phase is related to the classic Pancharatnam–Berry phase. We show a method with which to calculate it
and experimentally demonstrate its effect, using subwavelength metal stripe space-variant gratings. The
experiment is based on a unique grating for converting circularly polarized light at a wavelength of 10.6 mm
into an azimuthally polarized beam. Our experimental evidence relies on analysis of far-field images of the
resultant polarization. © 2001 Optical Society of America
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The Pancharatnam–Berry phase is a well-known
geometrical phase that appears when the polarization
of a light beam is made to trace out a geodesic triangle
on the Poincaré sphere.1,2 The phases of the final
and initial states differ by an amount equal to half of
the solid angle encompassed by the triangle. Until
now, most papers on the subject have treated the
appearance of this phase in relation to propagating
beams whose polarization is space invariant, (i.e.,
beams whose polarization is homogeneous over a
transverse cross section). In typical experiments the
polarization of the beam is altered by use of rotating
wave plates and polarizers or by a wound optical
fiber,3,4 and the phase difference is introduced through
the evolution of the beam in the time domain. How-
ever, to the best of our knowledge, no discussion has
yet been made of the appearance of geometrical phases
in space-variant (i.e., transversely inhomogeneous)
polarization-state manipulations.5 In this Letter
we discuss geometrical phases introduced by such
manipulations.

We show that, when a uniformly polarized beam
undergoes space-variant polarization manipulation,
its phase undergoes modif ication in the space domain.
This phase modif ication is space varying and is of a
geometrical nature. We provide a method for calcu-
lating this phase and provide experimental evidence
to support our claims. The experimental support
is based on a unique subwavelength metal stripe
space-variant grating (SVG) designed for converting
circularly polarized light into an azimuthally polarized
beam. We demonstrate the existence of this phase
by showing its effect on the far-field image of this
beam, thereby emphasizing the relevance of correct
phase determination in propagation of space-variant
polarization beams.

Figure 1 illustrates space-variant polarization state
manipulation by use of the Poincaré sphere. A beam
initially in polarization state A undergoes space-vari-
ant manipulation, which results in a wave front with
space-variant polarization; i.e., there exist points Bi
�i � 1, 2 . . .� at which the local polarization is different.
The local polarization ellipse at these points is defined
by azimuthal angle c and by ellipticity tan x, which
are found from the Stokes parameters Sn �n � 0, . . . 3�
as tan 2c � S2�S1, sin 2x � S3�S0.6 Inasmuch as
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the change in polarization introduces a geometrical
phase, we can expect space-variant polarization-state
manipulation to introduce a space-variant phase modi-
fication. We consider such phenomena, which are due
to SVGs.

SVGs are typically described by a grating vector:

Kg�x, y� � �2p�L�x,y�� �cos�b�x, y��x̂ 1 sin�b�x, y��ŷ� ,

(1)

where L is the period of the grating, x̂ and ŷ are
unit vectors in the respective directions, and b is the
direction of the vector, chosen such that it is directed
perpendicular to the metal stripes. In a previous
Letter5 we showed a method for converting circularly
polarized light into space-variant polarization by
using SVGs. We showed that the transmitted polar-
ization can be analyzed by use of a space-variant Jones
matrix6:

Fig. 1. Demonstration of space-variant polarization-state
manipulations on a Poincaré sphere. Inset, resultant local
polarization ellipse.
© 2001 Optical Society of America
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J�x, y� � M�b�x, y��J�L�x, y��M21�b�x, y�� , (2)

where J�L�x, y�� is the Jones matrix that represents
a SVG of period L with b � 0 and M�b� is the 2 3

2 rotation matrix. Because the eigenpolarizations of
the grating are oriented parallel and perpendicular to
the grating vector, J�L� is in general a diagonal matrix
and can be written as

J�L� �

∑
p o
o q exp�ig�

∏
exp�iw� , (3)

where w, which we associate with the dynamic phase
of the grating, is chosen such that p, q, and g are real.
The elements of the matrix can be calculated by use of
rigorous coupled-wave analysis,7 and, once they have
been calculated, the output polarization at any point of
the grating is found as Eout � J�x, y�EA, where EA is
the Jones vector of the incident polarization. To inves-
tigate the effect that such operators have on the phase
of the transmitted beam, we assume circularly polar-
ized light incident upon a SVG, i.e., EA � �1, i�T . We
assume two points, B1 and B2, for which the local pe-
riod is equal and for which the angle between the grat-
ing vectors is u. Because the period of the grating is
equal at points B1 and B2, the polarization of EB1 and
EB2 differs in azimuthal angle �c2 2 c1 � u�, whereas
the ellipticity of tan x is equal at these points. Choos-
ing the coordinate system such that the Jones matrix
at point B1 is diagonal, and using Eqs. (2) and (3), we
find that

EB1 �

∑
p

iq exp�ig�

∏
exp�iw� ,

EB2 �

∑
p cos u 1 iq exp�ig�sin u

2p sin u 1 iq exp�ig�cos u

∏
exp�iw� (4)

and that the phase difference between them (the argu-
ment of their inner product1,8) is

arg��EB1 ,EB2	� � u 2 arctan
∑
2pq cos g sin u

�p2 1 q2�cos u

∏

� u 2 arctan�sin 2x tan u� , (5)

where sin 2x � S3�S0 � 2pq cos g��p2 1 q2�.6
Algebraic calculations show that this phase is exactly
equal to half of the area of triangle AB1B2, thereby
providing a meaningful connection to the Pancharat-
nam phase defined by this triangle.8 Furthermore, as
J�L� is found by direct solution of the Maxwell equa-
tions, the dynamic and geometric phases associated
with the change in period are already incorporated into
the matrix, and therefore Eq. (2) permits calculation
of the exact phase of the entire transmitted beam.

We can demonstrate the effect of this phase by
considering a perfect space-variant polarizer for
transforming circularly polarized light into azimuthal
polarization, i.e., x � 0 and c � p�2 1 u, where
tan u � y�x. On applying Eq. (5), we find that the
output phase has been modified and that the beam
can be described by the Jones vector
∑
Ex�x,y�
Ey�x, y�

∏
� i exp�iu�

µ
2sin u

cos u

∂
. (6)

Figure 2(a) describes the instantaneous real part of
the electric field represented by this vector. Note that
the intensity of the beam is uniform at all points; there-
fore the size and direction of the arrows in the f igure
indicate the phase. Furthermore, an illustration of
the imaginary part of this vector will be rotated at 90±

relative to Fig. 2(a). We see that the vectors at oppo-
site sides of the center are in phase and are aimed in
the same direction. We define this polarization as be-
ing in phase, as opposed to the antiphase polarization
depicted in Fig. 2(b) into which no phase modif ication
has been introduced. Although the beam is still azi-
muthally polarized, the vectors at opposite sides of
the center are aimed in opposite directions and are
antiphase. Although the two wave fronts described
by Figs. 2(a) and 2(b) possess the same polarization,
they consist of different phases, and it can be expected
that they will propagate differently, producing distin-
guishable far-field images. For instance, symmetry
dictates that the far field of Fig. 2(a) exhibit a peak
at its center, whereas the far field of Fig. 2(b) should
produce a dark center. Therefore it is possible to ver-
ify this phase by examining far-field images.

We constructed a SVG for converting circularly po-
larized light into an azimuthally polarized beam.9 To
do this, we required that grating direction b satisfy
b � cdesired 2 Dc�L�, where cdesired is the desired
azimuthal angle and Dc�L� is the period-dependent
angle between the large axis of the polarization ellipse
and the grating vector. Note that the exact depen-
dence of Dc�L� on period is complicated and that it
can be accurately calculated by rigorous coupled-wave
analysis. Substituting b into Eq. (1) and requiring
that = 3 Kg � 0 results in a self-contained differential
equation from which the grating vector is found.
Finally, the grating function is found by integration of
Kg along an arbitrary path to yield

f �
Z

Kgdr �
2pr0
L0

cos�Dc�L0��

3

√√√
u 2

Z r tan�Dc�L�r���
r

dr

!!!
, (7)

Fig. 2. Illustration of the instantaneous real part of the
electric field vectors of in-phase and antiphase azimuthal
polarization.
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Fig. 3. (a) Magnified geometry of the grating for con-
verting circular polarization into azimuthal polarization
and (b) experimental measurement of the local azimuthal
angle c.

Fig. 4. Measured and calculated cross sections of the
far-field images for (a) the in-phase and (b) the antiphase
azimuthal polarization. Inset, experimental intensity
distributions.

where r0 and L0 are constants and L�r� is determined
from the equation

K0 � 2p�L�r� � �2p�L0� ���r0 cos�Dc�L0���

r cos�Dc�L�r������ .

We realized a Lee-type binary grating10 that de-
scribes the function in Eq. (7), with L0 � 2 mm and
r0 � 4.8 mm such that 2.5 mm , r , 4.8 mm and
2 mm , L , 3.2 mm. The metal stripes consisted of
10 of nm Ti and 60 of nm Au, which were deposited
onto 500-mm-thick GaAs wafers by photolithography
and a lift-off technique. The magnified geometry
of this element is demonstrated in Fig. 3(a). After
fabrication, an antiref lective coating was applied
to the back side of the element. We also realized
a similar element for forming radial polarization.
However, for this demonstration we address only the
azimuthal beam.

We illuminated the grating with circularly polarized
light at a wavelength of 10.6 mm from a CO2 laser
and then measured the Stokes parameters of the trans-
mitted beam, using the four-measurement technique,6

from which the local ellipticity and azimuthal angle
were calculated at each point. Figure 3(b) shows the
experimental azimuthal angle, c, of the output beam.
The average experimental deviation c from cdesired
was 5.5±, which we associate with a fabrication error.
We also found an average ellipticity �tan x� of 0.1, lead-
ing to an overall polarization purity (percent of energy
in the desired direction) of 98.2%.

The transmitted beam should be in phase, as de-
scribed by Eq. (6) and in Fig. 2(a). However, small de-
viations are expected because of the nonzero ellipticity
and the deviation of c from cdesired. We used the Jones
matrix formulation of Eq. (2) to calculate the beam
accurately.

To determine the phase front of the transmitted
beam, we observed the beam’s far-field image. Fig-
ure 4(a) shows a calculated and a measured cross
section for this image. We obtained the theoretical
result by decomposing the beam into two orthogonal
components with linear polarization, for which the
far-field Fraunhoffer intensities were f irst calculated
and then summed. We achieved the experimental
result by focusing the beam through a lens with a
500-mm focal length. We found excellent agreement
between theory and experiment, with the sharp peak
at the center, clearly indicating that the beam is in
phase. The beam can be converted into antiphase
polarization by use of a spiral phase element (formed
by 32-level reactive-ion etching of a ZnSe substrate),
with a phase function exp�iu�x, y��.11 Figure 4(b)
shows the experimental and theoretical far-field
images for this beam. A dark spot can be observed
at the center of the far-field image, providing evidence
that the beam is now antiphase and hence emphasiz-
ing the relevance of correct phase determination in
polarization-state manipulation.

To conclude, we have shown the appearance of a
geometrical phase in space-variant polarization-state
manipulation. The determination of this phase is
important in applications of polarization beam shap-
ing such as atom trapping, optical tweezers, and tight
focusing.12
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