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We present a unique method for real-time polarization measurement by use of a discrete space-variant sub-
wavelength grating. The formation of the grating is done by discrete orientation of the local subwavelength
grooves. The complete polarization analysis of the incident beam is determined by spatial Fourier transform
of the near-field intensity distribution transmitted through the discrete subwavelength dielectric grating fol-
lowed by a subwavelength metal polarizer. We discuss a theoretical analysis based on Stokes–Mueller for-
malism, as well as on Jones calculus, and experimentally demonstrate our approach with polarization mea-
surements of infrared radiation at a wavelength of 10.6 mm. © 2003 Optical Society of America
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1. INTRODUCTION
Optical polarimetry measurement has been widely used
for a large range of applications such as ellipsometry,1

bioimaging,2 imaging polarimetry,3 and optical
communications.4 A commonly used method is the mea-
suring of the time-dependent signal once the beam is
transmitted through a photoelastic modulator5 or a rotat-
ing quarter-wave plate (QWP) followed by an analyzer.6

The polarization state of the beam can be derived by Fou-
rier analysis of the detected signal. This method, how-
ever, requires a sequence of consecutive measurements,
thus making it impractical for real-time polarization mea-
surement in an application such as adaptive polarization-
mode dispersion compensation in optical communications.
Moreover, it involves either mechanically or electronically
active elements, resulting in a complicated and cumber-
some device.

An increasing demand for faster and simpler methods
has led to the development of the simultaneously four-
channel ellipsometer.7 In this method the beam is split
into four channels; each is analyzed by using different po-
larization optics, while the real-time polarization state is
calculated from the measured intensities. The main
drawback of this method is its high sensitivity to statisti-
cal errors as a result of the low number of measurements.
Recently, Gori8 proposed real-time polarimetry by use of a
space-variant polarizer, in what is basically a manifesta-
tion of the four-channel technique. This method relies on
measuring the far-field intensity and therefore is not suit-
able for on-chip integrated applications.

In our recent letter,9 we presented a space-domain
analogy to the rotating QWP method. In this method
spatial intensity distribution analysis is applied for real-
time near-field polarimetry. The intensity modulation is
achieved by a space-variant wave plate, realized as a
computer-generated space-variant continuous subwave-
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length grating, followed by an analyzer. However, conti-
nuity of the subwavelength grating had led to a space-
dependent local period. Therefore, in order for the period
not to exceed the Wood anomaly,9,10 the elements were re-
stricted in their physical dimensions. Moreover, the
varying periodicity had complicated the optimization of
the photolithographic process and had led to spatial
variations in the retardation of the element.

In this paper we propose real-time near-field polarime-
try by spatial discrete rotating of the groove orientation of
a subwavelength dielectric grating. The grating of this
type of element is divided into equal-sized zones. The
subwavelength grooves are of uniform orientation and pe-
riod at each zone and are rotated at discrete angles re-
spective to each zone. The resulting elements are unlim-
ited in their dimensions and have uniform optical
parameters. We named such elements discrete space-
variant subwavelength dielectric gratings (DSGs). Un-
like the case for other methods based on Fourier analysis,
no active elements are required to determine the polariza-
tion state of an incident beam. Our method is less sen-
sitive to statistical errors because of the increased num-
ber of measurements, and it is suitable for real-time
applications and can be used in compact configurations.
It is possible to integrate our polarimeter on a two-
dimensional detector array for laboratory on-chip applica-
tions to achieve a high-throughput and low-cost commer-
cial polarimeter for biosensing.

In Section 2 we discuss a theoretical analysis of the
near-field intensity distributions of the beams transmit-
ted through our computer-generated space-variant sub-
wavelength gratings as a function of the polarization
state of the incident beams by use of Stokes–Mueller for-
malism. In Appendix A we use Jones calculus to gain
physical insight into the main results of Section 2. In
Section 3 we describe the realization procedure and ex-
2003 Optical Society of America
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perimentally demonstrate the ability of our method to
measure the polarization state as well as the degree of po-
larization for fully and partially polarized light. Section
4 is devoted to concluding remarks.

2. THEORETICAL ANALYSIS BY USE OF
STOKES–MUELLER FORMALISM
The concept of near-field polarimetry based on subwave-
length gratings is presented in Fig. 1. A uniformly polar-
ized light is incident upon a polarization-sensitive me-
dium (e.g., biological tissue, optical fiber, wave plate, etc.)
and then transmitted through a DSG, which acts as a
space-variant wave plate, followed by a polarizer. The
resulting intensity distribution is imaged onto a camera
and captured for further analysis. It will show further
that the emerging intensity distribution is uniquely re-
lated to the polarization state of the incoming beam.
This dependence is given by a spatial Fourier series
analysis, whereby the resulting Fourier coefficients com-
pletely determine the polarization state of the incoming
beam.

The DSGs are considered wave plates with constant re-
tardation and space-variant fast axes, the orientation of
which is denoted by u(x, y). It is convenient to form
such space-variant wave plates by use of a subwavelength
grating. When the period of a subwavelength periodic
structure is smaller than the incident wavelength, only
the zero order is a propagating order, and all other orders
are evanescent. The subwavelength periodic structure
behaves as a uniaxial crystal with the optical axes paral-
lel and perpendicular to the subwavelength grooves.11

Therefore, by fabricating quasi-periodic subwavelength
structures, for which the orientation of the subwave-
length grooves is changed along the length of the element,
one can form space-variant wave plates.

The creation of a DSG is done by discrete orientation of
the local subwavelength grating, as illustrated in Fig.
2(a). The DSG is obtained by dividing the element into N
equal-sized zones along the x axis, where each zone con-
sists of a uniform orientation as well as a uniform sub-
wavelength grating period. The orientation of the
grooves is defined by the angle u between the grating vec-
tor Kg of the subwavelength grating (perpendicular to the
grooves) and the x axis; therefore u is a function of the x
coordinate @u(x)#. The grating period d is defined as the
distance between the nearest zones having identical ori-
entations. We consider the period of grating d as larger
than the incident wavelength l, whereby the local sub-
wavelength period of the grooves, L, is smaller than the
incident wavelength. Figure 2(a) presents a DSG with a
period that consists of N 5 4 zones of uniform orientation
of the subwavelength grating. We denote N as the num-
ber of discrete levels.

The polarization state within the Stokes representation
is described by a Stokes vector S 5 (S0 , S1 , S2 , S3)T,
where S0 is the intensity of the beam, whereas S1 , S2 ,
and S3 represent the polarization state. In general,
S0

2 > S1
2 1 S2

2 1 S3
2, where the equality holds for

fully polarized beams.6 The polarization state emerging
from an optical system (i.e., wave plates, polarizers, etc.)
is linearly related to the incoming polarization state
through S8 5 MS, where M is a 4 3 4 real Mueller ma-
trix of the system and S and S8 are the Stokes vectors of
the incoming and outgoing polarization states, respec-
tively.

The optical system under consideration consists of a
DSG followed by a polarizer. This composite element can
be described, in Cartesian coordinates, by the Mueller
matrix

M 5 PR~2u!WR~u!, (1)

where

R~u! 5 F 1 0 0 0

0 cos~2u! sin~2u! 0

0 2sin~2u! cos~2u! 0

0 0 0 1
G

is the Mueller matrix that represents rotation of the axis
frame by angle u and
Fig. 1. Schematic presentation of near-field Fourier transform polarimetry based on a discrete space-variant subwavelength dielectric
grating followed by a subwavelength metal polarizer.
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Fig. 2. (a) Magnified geometry of the discrete space-variant dielectric grating with a number of discrete levels N 5 4. (b) Discrete
rotation angle of the subwavelength grating as a function of x coordinate; the local groove orientations are indicated. (c) Scanning
electron microscopy image of a region on the subwavelength structure. (d) Scanning electron microscopy image of a cross section of the
subwavelength grooves.
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is the Mueller matrix of a transversally uniform retarder6

with retardation f and real transmission coefficients for
two eigenpolarizations tx and ty . Finally,

P 5
1

2 F 1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0
G

is the Mueller matrix of an ideal horizontal polarizer.
The outgoing intensity can be related to the incoming

polarization state of the beam by calculating the Mueller
matrix given by Eq. (1) and using the linear relation be-
tween the incoming and outgoing Stokes vectors, yielding

S08~x ! 5
1
4 (AS0 1

1
2 ~A 1 C !S1 1 B~S1 1 S0!cos@2u~x !#

1 ~BS2 2 DS3!sin@2u~x !# 1
1
2 ~A 2 C !

3 $S1 cos@4u~x !# 1 S2 sin@4u~x !#%), (2)

where A 5 tx
2 1 ty

2, B 5 tx
2 2 ty

2, C 5 2txty cos f, and
D 5 2txty sin f.

Equation (2) describes the intensity of the outgoing
beam as a truncated Fourier series with coefficients that
depend on the Stokes parameters of the incident beam.
In our case u represents the discrete rotation angle of the
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retarder (subwavelength grating) as a function of the lo-
cation along the x axis. A single period of u can be writ-
ten explicitly as

u~x ! 5

¦

0, 0 , x ,
d

N

p

N
,

d

N
, x ,

2d

N

] ]

p~m 2 1 !

N
,

d~m 2 1 !

N
, x ,

dm

N

] ]

p~N 2 1 !

N
,

d~N 2 1 !

N
, x , d

§
, (3)

where m is an integer number, with N > m > 0. Figure
2(b) illustrates u(x) for a number of discrete levels
N 5 4. Note that u(x) is periodic in p.

Inserting the discrete angle described by Eq. (3) into
Eq. (2) and then expanding the trigonometric expressions
into a Fourier series yields the resulting intensity distri-
bution

4S08~x ! 5 AS0 1
1

2
~A 1 C !S1 1 B~S1 1 S0!

3 (
n51

`

@an cos~2pnx/d ! 1 bn sin~2pnx/d !#

1 ~BS2 2 DS3! (
n 5 1

`

@cn sin~2pnx/d !

1 dn cos~2pnx/d !# 1
1

2
~A 2 C !

3 H S1(
n51

`

@en cos~4pnx/d ! 1 fn sin~4pnx/d !#

1 S2(
n51

`

@ gn sin~4pnx/d !

1 hn cos~4pnx/d !#J . (4)

The corresponding Fourier coefficients in Eq. (4) are given
by

an 5 cn 5
N

2pn
sinS 2p

N D ,

bn 5 dn 5
N

pn
sin2S p

N D ,

en 5 gn 5
N

4pn
sinS 4p

N D ,

fn 5 hn 5
N

2pn
sin2S 2p

N D (5)
for n 5 kN 6 1 (k 5 0, 1, 2, 3,...) and are zero otherwise.
One can see from Eqs. (5) that increasing the number of
discrete levels N increases a1 , c1 , e1 , and g1 toward
unity and decreases b1 , d1 , f1 , and h1 toward zero.
Moreover, as the number of discrete levels increases, the
higher-order terms tend to reach zero as well; thus, at the
limit of an infinite number of discrete levels, Eq. (4) de-
generates to the case of a continuous space-variant sub-
wavelength grating.9

With the use of Fourier analysis, the first coefficients of
Eq. (4) yield

AS0 1
1

2
~A 1 C !S1 5

4

d
E

0

d

S08~x !dx, (6a)

B~S1 1 S0!a1 1 ~BS2 2 DS3!b1

5
8

d
E

0

d

S08~x !cosS 2px

d D dx, (6b)
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5
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d
E

0
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S08~x !sinS 2px

d D dx, (6c)
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16

d
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0
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(6d)

~A 2 C !~S1f1 1 S2e1! 5
16

d
E

0

d

S08~x !sinS 4px

d D dx.

(6e)

These equations are a linear combination of the Stokes
parameters of the incident beam. To extract S0 –S3 ,
Eqs. (6) should represent four independent equations,
which are obtained for N > 5. However, a larger number
of discrete levels N is desirable, in which case a larger
portion of the intensity is represented by the first har-
monics of every series of Eq. (4) and therefore a larger
signal-to-noise ratio can be obtained. We note that the
grating coefficients A, B, C, and D should be determined
by direct measurement of the subwavelength grating pa-
rameters tx , ty , and f or by performing a suitable cali-
bration process. The full synthesis of the incoming polar-
ization state is given in Appendix B. Moreover, an
interesting physical insight into our polarimeter ap-
proach is given in Appendix A by use of Jones calculus.

3. REALIZATION PROCEDURE AND
EXPERIMENTAL RESULTS
The DSG element for CO2 laser radiation of 10.6-mm
wavelength was fabricated upon a 500-mm-thick GaAs
wafer with L 5 2 mm, d 5 2.5 mm, and N 5 16. The
dimensions of the element were 30 mm 3 3 mm and con-
sisted of 12 periods of d. First, a binary chrome mask of
the grating was fabricated by using high-resolution laser
lithography. The pattern was then transferred onto the
GaAs wafer by use of photolithography, after which we
etched the grating by electron cyclotron resonance with
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BCl3 for 35 min, resulting in an approximately 2.5-mm
groove depth. Finally, an antireflection coating was ap-
plied to the back side of the wafer. Figure 2(c) shows a
scanning electron microscopy image of a region on the
subwavelength structure that we fabricated, whereas Fig.
2(d) depicts an image of a cross section of the subwave-
length grooves.

Following the measurements, we used the setup de-
picted in Fig. 1 to test our concept for polarization mea-
surements, whereby a subwavelength metal wire grating
was used as a polarizer.10 First, a calibration process
was performed by illuminating the DSG followed by a po-
larizer with horizontal, vertical, and right-hand circularly
polarized light. We determined the experimental optical
parameters by fitting the curve of Eq. (4) to the measured
intensity distributions, using a least-mean-squares algo-
rithm, with tx , ty , and f of the DSG as free parameters.
The calibration process yielded a DSG having tx 5 0.9,
ty 5 0.8, and retardation f 5 0.3p rad. These values
are close both to the theoretical predictions of tx 5 0.87,

Fig. 3. Measured (circles) and predicted (solid curves) values of
the normalized transmitted intensity as a function of the x coor-
dinate along the DSG when the fast axis of the rotating QWP
was at angles (a) 0°, (b) 20°, and (c) 45°; the insets show the ex-
perimental images of the near-field transmitted intensities.
ty 5 0.81, and f 5 0.352p rad that were achieved by us-
ing a rigorous coupled-wave analysis12 for a groove profile
depicted in Fig. 2(d) and to the direct measurement of the
optical parameters using ellipsometric techniques,6 which
resulted in tx 5 0.940, ty 5 0.833, and f 5 0.281p rad
with a standard deviation of approximately 0.02 for tx
and ty and of 0.022 rad for f. We found that in our etch-
ing process, the errors in the etching depth were approxi-
mately 5% of the nominal depth (3.3 mm). Therefore we
can relate the deviations of tx , ty , and f to the spatial er-
rors in the etching process. Note that the calibration val-
ues also take into account other imperfections of the opti-
cal setup.

To test the ability of our device in conducting polariza-
tion measurements of fully polarized light, we used a CO2
laser that emitted linearly polarized light at a wavelength
of 10.6 mm and replaced the polarization-sensitive me-
dium with a QWP. The images were captured by a Spiri-
con Pyrocam III 124 3 124 two-dimensional pyroelectric
detection array at a rate of 24 Hz. Figure 3 shows the

Fig. 4. Measured (circles) and predicted (solid curves) values of
the normalized Stokes parameters (a) S1 /S0 , (b) S2 /S0 , and (c)
S3 /S0 as a function of the orientation of the QWP.
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measured intensity distributions captured in a single
camera frame, when the fast axis of the QWP was set at
angles 0°, 20°, and 45°, as well as the predicted results.
The prediction was obtained by inserting the expected
values for the incoming Stokes parameters into Eq. (4) for
A 5 1.45, B 5 0.17, C 5 0.8464, and D 5 1.165. Conse-
quently, Fig. 4 shows the measured and predicted Stokes
parameters of a resulting beam as a function of the orien-
tation of the QWP. We determined the experimental val-
ues of S1 , S2 , and S3 by using Eqs. (B1a)–(B1d). The
integrals a, b, g, and d were numerically evaluated from

Fig. 5. Measured (circles) and predicted (solid curves) values for
(a) azimuthal angle c and (b) ellipticity angle x as a function of
orientation of the QWP.

Fig. 6. Calculated (solid curve) and measured (circles) DOP as a
function of intensity ratio of the two independent lasers having
orthogonal linear polarization states, as used in a setup depicted
in the top inset. The bottom inset shows calculated (solid
curves) and measured (circles) intensity cross sections for the
two extremes, I1 5 I2 (DOP 5 0.059) and I2 5 0 (DOP
5 0.975).
the acquired data by using the Simpson algorithm.
There is a good agreement between the predictions and
the experimental results. Moreover, Fig. 5 shows the ex-
perimental and theoretical azimuthal angle c and the el-
lipticity angle x, calculated from the data in Fig. 4, by use
of the relations tan(2c) 5 S2 /S1 and sin(2x) 5 S3 /S0 .6

The measurements yield a standard deviation error with
respect to the theoretical predictions of 2.6° and 0.6° for
the azimuthal angle and the ellipticity angle, respectively.
The errors of the polarization measurements result
mainly from systematic errors such as the nature of the
algorithm, imprecision in the rotation of the QWP, spatial
inhomogeneity in the QWP retardation, which is approxi-
mately 62°, spatial inhomogeneity in the retardation of
the subwavelength grating, which is approximately 61.3°
(8% of the nominal phase), and low resolution of the IR
camera and dynamic range, as well as statistical noise
due to spatial and temporal fluctuation of the light emit-
ted from the laser, shot noise and amplifier noise of the IR
camera, pixel response nonuniformity, and quantization
noise. The standard deviations in the azimuthal angle
and the ellipticity angle for a series of successive mea-
surements were 0.2° and 0.07°, respectively.

To demonstrate the use of a DSG for polarimetry of par-
tially polarized beams, we combined two independent
CO2 lasers of orthogonal linear polarization states by use
of the setup depicted in the inset at the top of Fig. 6. The
degree of polarization (DOP) is defined by DOP 5 (S1

2

1 S2
2 1 S3

2)1/2/S0 . For incoherent beam summation,
the Stokes vector of the resulting beam is the sum of the
Stokes vectors of the combined beams.6 In the case of
two orthogonal linearly polarized beams, the DOP is
given by DOP 5 (I1 2 I2)/(I1 1 I2), where I1 and I2 are
the intensities of the horizontally and vertically polarized
beams, respectively. Figure 6 shows the measured and
predicted DOP as a function of the intensity ratio I1 /I2 .
The inset shows the experimental intensity distributions
for two extreme cases. The first is for equal intensities
(I1 5 I2), in which the measured DOP is 0.0059, indicat-
ing unpolarized light. The second is for illumination of a
single laser only (i.e., I2 5 0), in which the measured
DOP is 0.975, indicating fully polarized light. This ex-
periment shows the ability to obtain all four Stokes pa-
rameters simultaneously, thereby emphasizing the good
agreement between prediction and measurement for par-
tially polarized light.

4. CONCLUSIONS
We have theoretically analyzed and experimentally dem-
onstrated the use of a computer-generated space-variant
discrete subwavelength dielectric grating for real-time po-
larization measurement. The discrete subwavelength
gratings are unlimited in their dimensions, have uniform
optical properties (tx , ty , and f), and, in general, are
lightweight, compact, and highly efficient. Both the
space-variant subwavelength dielectric grating and the
polarizer were realized by using photolithographic tech-
niques commonly used in the production of microelectric
devices. Therefore the camera and the gratings could be
combined into a single chip, resulting in a very small de-
vice for polarization measurements.
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APPENDIX A: THEORETICAL ANALYSIS
FROM THE INTERFERENCE POINT
OF VIEW
Subwavelength quasi-periodic structures are conve-
niently described as depicted in Fig. 2 by using Jones cal-
culus. The analysis in this case is limited to fully polar-
ized coherent beams. The DSG, which is a birefringent
element with optical axes (parallel and perpendicular to
the grating grooves) that rotate periodically in the x direc-
tion, can be represented as a polarization diffraction grat-
ing. When a plane wave with a uniform polarization is
incident upon such a periodic subwavelength structure,
the transmitted field will be periodic in both the polariza-
tion state and the phase front; therefore we can expect
this field to yield discrete diffraction orders. The inter-
ference between the diffraction orders in the near field
yields spatial intensity modulation. Evidently, the re-
sulting interferogram pattern is directly related to the in-
cident polarization state.

In this representation a uniform periodic subwave-
length structure, the grooves of which are oriented along
the y axis, can be described by the Jones matrix

J 5 F tx 0

0 ty exp~if !
G , (A1)

where tx and ty are the real amplitude transmission coef-
ficients for light polarized perpendicular and parallel to
the optical axes and f is the retardation of the grating.
Consequently, the space-dependent transmission matrix
of the DSG can be described by

TC~x ! 5 M(u~x !)JM21(u~x !), (A2)

where u(x) is the discrete local orientation of the optical
axis given by Eq. (3) and Fig. 2(b), and M(u)
5 @sin u

cosu
cos u

2sin u # is the two-dimensional rotation matrix.
Note that, meanwhile, the polarizer is omitted from the
optical system, and this will be referred to below.

For convenience, we convert TC(x) to the helicity basis;
therefore the space-variant polarization grating can be
described by the matrix T(x) 5 UTCU21, where U
5 1/A2@2i

1
i
1# is a unitary conversion matrix. Explicit

calculation of T(x) yields

T~x ! 5
1

2
@tx 1 ty exp~if !#F1 0

0 1G 1
1

2
@tx 2 ty exp~if !#

3 F 0 exp@i2u~x !#

exp@2i2u~x !# 0 G . (A3)

We further adopt the Dirac bra–ket notation, in which
uR& 5 (1, 0)T and uL& 5 (0, 1)T are the two-dimensional
unit vectors for right-hand and left-hand circularly polar-
ized light, respectively. Thus the resulting field is the
product of an incident plane wave with arbitrary polariza-
tion uEin& and the space-dependent transmission matrix
T(x) given by Eq. (A3), yielding

uEout& 5 hEuEin& 1 hR exp@i2u~x, y !#uR&

1 hL exp@2i2u~x, y !#uL&, (A4)

where
hE 5
1
2 @tx 1 ty exp~if !#,

hR 5
1
2 @tx 2 ty exp~if !#^EinuL&,

hL 5
1
2 @tx 2 ty exp~if !#^EinuR&

are the complex field coefficients and ^aub& denotes the in-
ner product. From Eq. (A4) it is evident that the emerg-
ing beam from the DSG, which is denoted by uEout&, com-
prises three polarization orders. The first maintains the
original polarization state and phase of the incident
beam, the second is right-hand circularly polarized with a
phase modification of 2u(x), and the third has polariza-
tion direction and phase modification opposite to those of
the former polarization order. Note that the phase modi-
fication of the uR& and uL& polarization orders results
solely from local changes in the polarization state and
therefore is geometrical in nature.13

Since u(x) is a periodic function [Eq. (3), Fig. 2(b)], the
functions exp@i2u (x)# and exp@2i2u (x)# in Eq. (A4) can be
expanded into a Fourier series. Taking into account the
connection between the Fourier series of the conjugated
functions exp@i2u (x)# and exp@2i2u (x)# leads to the equa-
tion

uEout& 5 hEuEin& 1 hR (
m52`

`

am exp~i2pmx/d !uR&

1 hL (
m52`

`

a2m* exp~i2pmx/d !uL&, (A5)

where am 5 (2/d)*0
d exp$i2@u (x) 1 mpx/d#%dx. Based on

Eq. (A5), we find that the diffraction efficiency into the
mth diffracted order of the uR& polarization order (hm

R

5 uamu2) is equal to the diffraction efficiency into the
2mth diffracted order of uL& (h2m

L 5 uam* u2); thus uR& and
uL& diffract in opposite manners. Therefore, as depicted
in Fig. 7, once a uniformly polarized beam is incident
upon the DSG, the resulting beam comprises three polar-
ization states described by Eq. (A4), whereas the polariza-
tion orders of uR& and uL& states are split into multiple dif-
fraction orders as a result of the discontinuity of the
phase, 2u(x).

In our near-field polarimetry concept, the wave front
emerging from the polarization grating is incident upon a
linear polarizer, described in the helicity basis by a Jones
matrix of the form

P 5
1

2
F1 1

1 1G .
The linearly polarized field emerging from the polarizer is
given by the product of Eq. (A5) and P, yielding

Ẽout 5
1

A2
FhE~^E inuR& 1 ^E inuL&!

1 hR (
m52`

`

am exp~i2pmx/d !

1 hL (
m52`

`

a2m* exp~i2pmx/d !G . (A6)
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Consequently, the intensity distribution is given by
uẼoutu2, which results, after some algebraic manipula-
tions, in an expression identical to that given in Eq. (4).

Note that if we use a 4-f telescope configuration for im-
aging the emerging beam from our polarimeter and insert
a spatial filter in the Fourier plane, the higher diffracted
orders can be eliminated. Therefore this can result in an
intensity distribution resembling the pattern obtained by
the continuous-grating-based polarimeter.9

APPENDIX B: SYNTHESIS OF THE
INCOMING POLARIZATION STATE
AS A FUNCTION OF THE
MEASURED INTENSITY
In this appendix we show the full synthesis of the incom-
ing polarization state as a function of the measured inten-
sity by solving Eqs. (6a)–(6e). Only four equations are
required to fully determine the polarization state,
whereas the possible choice of equations depends on the
number of discrete levels N. However, for N . 8 any
four equations out of the given five is suitable. From our
evaluation the best results could be obtained by omitting
Eq. (6b). The remaining equations can be written in ma-
trix form as HS 5 R, where S 5 (S0 , S1 , S2 , S3)T is the
incoming polarization state, R 5 (a, b, g, d)T, and H is
the coefficient matrix. Explicitly, a, b, g, and d are given
by

a 5
4

d
E

0

d

S08~x !dx, b 5
8

d
E

0

d

S08~x !sin~2px/d !dx,

g 5
16

d
E

0

d

S08~x !cos~4px/d !dx,

Fig. 7. Diffraction orders emerging from the DSG: zero order
(dashed), first order for uR& and uL& polarized beams (solid), and
higher order for uR& and uL& polarized beams (dotted–dashed).
d 5
16

d
E

0

d

S08~x !sin~4px/d !dx,

whereby the coefficient matrix is

H 5 F A ~A 1 C !/2 0 0

Bb1 Bb1 Ba1 2Da1

0 ~A 2 C !e1 ~A 2 C !f1 0

0 ~A 2 C !f1 ~A 2 C !e1 0
G .

We note that the coefficients A,B,C, and D could be deter-
mined from a suitable calibration process. In that case H
is fully known by use of Eqs. (5). Consequently, the in-
coming polarization state can be calculated, by using
Kramer’s method, to yield

S0 5
1

A S a 2
1

2

A 1 C

A 2 C

ge1 2 df1

e1
2 2 f1

2 D , (B1a)

S1 5
1

A 2 C

ge1 2 df1

e1
2 2 f1

2 , (B1b)

S2 5
1

A 2 C

de1 2 gf1

e1
2 2 f1

2 , (B1c)

S3 5
1

Da1
H 2b 1

B

A
b1a 1

B

~e1
2 2 f1

2!

3 F S b1e1

2A
1

a1f1

A 2 C D g 2 S b1f1

2A
1

a1e1

A 2 C D dG J .

(B1d)
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