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Abstract

Polarization beam-splitters and optical switches based on subwavelength quasi-periodic structures are presented. By

locally controlling the orientation and period of the subwavelength grooves, birefringent elements for which the optical

axes vary periodically, are realized. We present a theoretical discussion of these elements, as well as a detailed de-

scription of the design and realization procedures. We show experimental results for infra-red radiation at a wavelength

of 10.6 lm. � 2002 Elsevier Science B.V. All rights reserved.

PACS: 42.25 Bs; 42.25.Ja; 42.79.Dj

Keywords: Wave propagation; Polarization; Gratings

1. Introduction

Polarizing beam-splitters are essential compo-
nents in polarization-based systems such as el-
lipsometers, magneto-optic data storage and
polarization-based light modulators. Often these
applications require that the elements provide high
extinction ratios over a wide angular bandwidth
while maintaining compact and efficient packag-
ing. Conventional polarizing beam-splitters, em-
ploying either natural crystal birefringence or
polarization-sensitive multilayer structures are

usually, either cumbersome or sensitive to angular
change, and therefore do not fully meet these re-
quirements.
Contemporary research has begun to address

the use of polarization diffraction gratings as
beam-splitters and optical switches. Unlike scalar
diffraction gratings that are based on periodic
modification of phase and amplitude, polarization
diffraction gratings introduce a periodic spatial
change of the state of polarization leading to po-
larization-dependent diffraction. Furthermore, the
polarization of the diffracted orders is generally
different from that of the incident beam. Such a
device was demonstrated by Davis et al. [1] who
used liquid crystals to create a waveplate with
space-varying retardation. Alternatively, Gori [2]
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suggested a grating consisting of a polarizer with a
spatially rotating transmission axis and Tervo and
Turunen [3] suggested that beam-splitters consist-
ing of spatially rotating wave-plates could be re-
alized using subwavelength gratings. More
recently a polarization diffraction grating based on
spatially rotating nematic liquid crystals has been
demonstrated [4].
In previous papers we demonstrated space-

variant polarization-state manipulations using
computer-generated subwavelength structures
[5–7]. When the period of a subwavelength periodic
structure is smaller than the incident wavelength,
only the zeroth order is a propagating order, and
all other orders are evanescent. The subwavelength
periodic structure behaves as a uniaxial crystal with
the optical axes parallel and perpendicular to the
subwavelength grooves. Therefore, by fabricating
quasi-periodic subwavelength structures, for which
the period and orientation of the subwavelength
grooves was space-varying, we realized continu-
ously rotating waveplates and polarizers for CO2
laser radiation at a wavelength of 10.6 lm. Fur-
thermore, we showed that such polarization ma-
nipulations necessarily led to phase modification of
geometrical origin, which left a clear signature on
the propagation of the resulting wave. The phase
introduced did not result from optical path differ-
ences but solely from local changes in polarization
and was infact a manifestation of the geometrical
Pancharatnam–Berry phase [8].
In this paper we present an experimental dem-

onstration of polarization diffraction gratings
based on space-variant computer-generated sub-
wavelength structures. We present a novel inter-
pretation of these elements and show that the
polarization-related diffraction is indeed connected
to the space-varying Pancharatnam–Berry phase
mentioned above. We present experimental results
for infra-red CO2 laser radiation that include a
polarization diffraction grating based on a space-
variant continuous metal-stripe subwavelength
structure, a continuously rotating dielectric sub-
wavelength structure and a binary waveplate, for
which the direction of the subwavelength grooves
varies discretely. We also demonstrate a circular
symmetric polarization mode switching based on a
computer-generated subwavelength structure, thus

enabling alternation between intensity distribu-
tions of a bright and dark center.

2. Theoretical analysis of the polarization diffraction

gratings

Fig. 1 is a schematic representation of the use of
a subwavelength structure as a polarization dif-
fraction grating. The local orientation of the sub-
wavelength grooves, hðxÞ, varies linearly in the
x-direction, to form a polarization diffraction
grating comprising a birefringent element with
optical axes (which are parallel and perpendicular
to the grating grooves) that rotate periodically in
the x-direction. The period of the polarization
diffraction grating, d, is larger than the incident
wavelength, k, whereas the local subwavelength
period of the grooves, Kðx; yÞ, is smaller than the
incident wavelength. When a plane-wave with
uniform polarization is incident on such a periodic
subwavelength structure, the transmitted field will
be periodic in both polarization and phase, there-
fore, we can expect this field to yield discrete dif-
fraction orders in the far-field.
It is convenient to describe subwavelength

quasi-periodic structures such as the one depicted
in Fig. 1 using Jones calculus. In this representa-
tion, a uniform periodic subwavelength structure

Fig. 1. Illustration of the concept of polarization diffraction

gratings fabricated using subwavelength quasi-periodic struc-

tures. The orientation of the subwavelength grooves, hðxÞ varies
periodically in the x-direction, resulting in an element with ef-

fective birefringence, whose optical axes (marked by the dark

and light arrows in the picture), rotate periodically. The po-

larization diffraction grating has period d, which is larger than

the incident wavelength, k, whereas the local subwavelength
period is K < k. The local optical axes at each point are ori-
ented parallel and perpendicular to the subwavelength grooves.
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the grooves of which are oriented along the y-axis
can be described by the Jones matrix

J ¼ tx 0
0 tyei/

� �
; ð1Þ

where tx, ty are the real amplitude transmission
coefficients for light polarized perpendicular and
parallel to the optical axes and / is the retarda-
tion of the grating. If the orientation of the
subwavelength grooves is space-varying, i.e., dif-
ferent at each location, then the subwavelength
structure can be described by the space-dependent
matrix

TCðxÞ ¼M hðxÞð ÞJM�1ðhðxÞÞ; ð2Þ
where hðxÞ is the local orientation of the optical
axis and

MðhÞ ¼ cos h � sin h
sin h cos h

� �

is a two-dimensional rotation matrix.
For convenience we adopt the Dirac bra-ket

notation, and convert TCðxÞ to the helicity base in
which

jRi ¼ 1
0

� �
and jLi ¼ 0

1

� �

are the two-dimensional unit vectors for right-
hand and left-hand circularly polarized light. In
this base, the space-variant polarization operator
is described by the matrix, TðxÞ ¼ UTCU

�1,
where

U ¼ 1ffiffiffi
2

p 1 1
�i i

� �

is a unitary conversion matrix. Explicit calculation
of TðxÞ yields

TðxÞ ¼ 1

2
tx
�

þ tyei/
� 1 0

0 1

� �
þ 1
2

tx
�

� tyei/
�

	
0 exp½i2hðxÞ�

exp½�i2hðxÞ� 0

� �
: ð3Þ

Thus for an incident plane-wave with arbitrary
polarization jEini we find that the resulting field is

jEouti ¼
ffiffiffiffiffi
gE

p jEini þ
ffiffiffiffiffiffi
gR

p
ei2hðx;yÞjRi

þ ffiffiffiffiffi
gL

p
e�i2hðx;yÞjLi; ð4Þ

where

gE ¼ j1
2
ðtx þ tyei/Þj2;

gR ¼ j1
2
ðtx � tyei/ÞhEinjLij2;

gL ¼ j1
2
ðtx � tyei/ÞhEinjRij2;

are the polarization order coupling efficiencies and
hajbi denotes inner product.
Fig. 2 is a graphic representation of the results

of Eq. (4). It shows that jEouti comprises three
polarization orders: the jEini polarization order
(EPO), the jRi polarization order (RPO) and the
jLi polarization order (LPO). The EPO maintains
the polarization and phase of the incident beam,
whereas the phase of the RPO is equal to 2hðxÞ,
and the phase of the LPO is equal to �2hðxÞ. We
note that the phase modification of the jRi and the
jLi polarization orders results solely from local
changes in polarization and is therefore geometri-
cal in nature. We therefore denote this phase as the
diffractive geometrical phase (DGP) [9].
The DGP for the jRi polarization order is op-

posite in sign to that of the jLi polarization order,
and if hðxÞ is periodic, the functions ei2hðxÞ and
e�i2hðxÞ that appear in Eq. (4) can be developed into
Fourier series. Taking into account the connection
between the Fourier series of a function and the

Fig. 2. A diagram describing the operation of polarization

diffraction gratings. A beam with polarization jEini is incident
on the polarization grating. The resulting beam comprises three

polarization orders, the EPO, which maintains the original

polarization and does not undergo phase modification. The

RPO that is jRi polarized, and whose phase is modified by 2hðxÞ
and the LPO that is jLi polarized, and whose phase is modified
by �2hðxÞ Since hðxÞ is periodic, the RPO and the LPO undergo
diffraction, resulting in the appearance of discrete diffraction

orders.
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Fourier series of its complex conjugate, this leads
to the equation

jEouti ¼
ffiffiffiffiffi
g0

p jEini þ
ffiffiffiffiffiffi
gR

p X1
m¼�1

amei2pmx=d jRi

þ ffiffiffiffiffi
gL

p X1
m¼�1

a��me
i2pmx=d jLi; ð5Þ

where

am ¼ 1

2p

Z
ei2hðxÞei2pmx=d dx:

Thus we find that the diffraction efficiency into
the mth order of the RPO (gRm ¼ jamj2), is equal to
the diffraction efficiency into the �mth order of the
LPO (gL�m ¼ ja�mj

2
), and conclude that the RPO

and LPO are diffracted in opposite senses.
Based on Eqs. (4) and (5) we find that there are

three degrees of freedom associated with the de-
sign of polarization diffraction gratings. The first
degree of freedom is the determination of the
subwavelength structure parameters, tx, ty and /.
These parameters determine the amount of energy
coupled into the EPO. The second degree of free-
dom is the grating orientation hðxÞ. hðxÞ that de-
termines the DGP, thereby determining the
diffraction efficiency into all diffraction orders. The
third degree of freedom is the incident polarization
jEini. It determines the ratio between the energy in
the RPO and the energy in the LPO. In the next
three sections, we intend to demonstrate how these
three degrees of freedom can be utilized for the
design and realization of polarization beam-split-
ters and optical switches using subwavelength
quasi-periodic structures.

3. Continuous blazed polarization diffraction grat-

ings

Supposing we wish to design a blazed polar-
ization diffraction grating, i.e., a grating for which
all the diffracted energy is in the first-order when
the incident beam is jRi polarized. For jEini ¼ jRi
we find that gR ¼ 0. Consequently the transmitted
beam only consists of the LPO and the EPO. Since
the EPO does not undergo any phase modification,
all of its energy is located in the zero-order, and the

only order that contributes energy to the first-order
is the LPO. In order to ensure that all the energy of
the LPO will be diffracted into the first-order, it is
required that the DGP for the LPO be equal to
2px=djmod2p. Consequently, we find that hðxÞ ¼
�px=djmodp. Next, in order to ensure that no energy
is found in the zero-order, we require that gE ¼ 0.
This condition leads to the solution tx ¼ ty and
/ ¼ p. Thus by determining the incident polar-
ization, jEini, the grating orientation, hðxÞ, and the
grating parameters tx ¼ ty and / ¼ p, we are able
to create the desired diffraction pattern.
In addition, we note that for such a grating, the

DGP for the RPO is 2hðxÞ ¼ �2px=djmod2p, and
therefore if jEini ¼ jLi, the grating is blazed in the
opposite direction. Thus for arbitrary incident
polarization, the diffracted energy will be distrib-
uted between the 1st and �1st orders. The distri-
bution is dependent on the polarization of the
incident beam. Furthermore, the polarization in
the first-order will always be jLi, and the polar-
ization in the �1st order will always be jRi. Thus,
by switching the incident polarization between an
jLi state and an jRi state, an optical switch can be
realized. Furthermore, if we choose / 6¼ p, then
some of the incident energy will be coupled into
the EPO, resulting in the appearance of a zero-
order that maintains the polarization of the inci-
dent beam, thereby demonstrating the usefulness
of such a device as a variable polarization-depen-
dent beam splitter.
We now focus our attention on the design of the

blazed grating discussed above using a quasi-pe-
riodic subwavelength structure. Since the deter-
mination of the grating parameters tx, ty and /
depend mainly on the subwavelength groove pro-
file, and not on the subwavelength groove orien-
tation, we begin by determining the desired sub
wavelength groove orientation, hðxÞ, and period,
Kðx; yÞ, for the subwavelength structure with the
desired DGP. The grating parameters tx, ty and /
are later determined by choosing a fabrication
process that yields a grating profile with the de-
sired birefringence.
To design a continuous subwavelength structure

with the desired DGP, we define a subwavelength
grating vector, Kgðx; yÞ, oriented perpendicular to
the desired subwavelength grooves
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Kgðx; yÞ ¼ K0ðx; yÞ cosðpx=dÞx̂x
� K0ðx; yÞ sinðpx=dÞŷy: ð6Þ

K0ðx; yÞ ¼ 2p=Kðx; yÞ par is yet to be determined as
the local spatial frequency of the subwavelength
structure. Fig. 3(c) illustrates this definition of
Kgðx; yÞ. To ensure the continuity of the sub-
wavelength grooves, we require that r	 Kg ¼ 0,
leading to the partial differential equation

oK0
oy
cosðpx=dÞ þ oK0

ox
sinðpx=dÞ þ p

d
K0 cosðpx=dÞ

¼ 0 ð7Þ

with the boundary condition K0ðx; 0Þ ¼ 2p=K0,
where K0 is the local subwavelength period at
y ¼ 0. The solution to this problem is given by

Kgðx; yÞ ¼
2p
K0
expð�py=dÞ

	 cosðpx=dÞx̂x
h

� sinðpx=dÞŷy
i
: ð8Þ

Consequently, the grating function is then found
by integrating Kg over an arbitrary path to yield

/gðx; yÞ ¼
2d
K0
sinðpx=dÞ expð�py=dÞ: ð9Þ

We realized a Lee-type binary subwavelength
structure mask [10] described by the grating
function of Eq. (9) using high-resolution laser li-
thography. The amplitude transmission for such a
Lee-type binary mask can be derived as

tðx; yÞ ¼ Us½cosð/gÞ � cosðpqÞ�; ð10Þ

where Us is the unit step function defined by

UsðgÞ ¼
1; gP 0;
0; g < 0




and where q is the duty cycle of the grating which
was chosen as 0.5. Fig. 3 illustrates the geometry of
a Lee-type binary subwavelength, as well as the
resulting DGPs for the RPO and the LPO formed
by this structure. The figure shows a continuous
quasi-periodic subwavelength structure with a lo-
cal subwavelength period Kðx; yÞ where at each
location on the element, the grooves are oriented
perpendicular to the required fast-axis, resulting in
the desired polarization diffraction grating. The
resulting DGPs resemble the phase function of a
scalar blazed grating. The RPO is blazed in the
opposite direction of the LPO as discussed above.
Hence, incident jRi polarization is diffracted in the
opposite direction of incident jLi polarization. The
local subwavelength periodicity gives the structure
its birefringence, whilst the continuity of the sub-
wavelength grooves ensures the continuity of the
resulting field. Furthermore, we note the space-
varying nature of Kðx; yÞ. This is a necessary result
for the requirement of continuity posed on the
subwavelength grooves [5,6].
We realized three different subwavelength

structures with the geometry shown in Fig. 3. The
first element was realized as a metal stripe sub-
wavelength structure using contact photolithogra-
phy and lift-off, and the other two elements were
dielectric gratings realized using contact photoli-
thography and dry etching techniques. The ele-
ments were realized for CO2 laser radiation at a
wavelength of 10.6 on 500 lm thick GaAs wafers.
We fabricated the gratings with K0 ¼ 2 lm, and

Fig. 3. (a) The magnified geometric representation of the con-

tinuous blazed polarization diffraction grating; (b) the resulting

DGPs for the RPO and LPO formed by this structure; (c) shows

a magnified image of a region on the subwavelength structure,

demonstrating the local subwavelength period Kðx; yÞ the local
subwavelength groove orientation hðx; yÞ and the local sub-
wavelength grating vector Kg; (d) scanning electron microscope

image of the GaAs dielectric structure.
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d ¼ 2:5 mm, consisting of 12 periods of d. The
gratings were formed with maximum local sub-
wavelength period of K ¼ 3:2 lm because the
Wood anomaly occurs at 3:24 lm forGaAs [5]. The
metal stripes consisted of a 10 nm adhesion layer of
Ti and 60 nm Au with a duty cycle of 0.6 yielding
measured values of tx ¼ 0:6, ty ¼ 0:2, and / ¼ 0:6p.
The dielectric gratings were fabricated using elec-
tron-cyclotron resonance etching with BCl3 to
nominal depth of 2:5 lm and duty cycle of 0.5, re-
sulting inmeasured values of a retardation/ ¼ p=2,
and tx ¼ ty ¼ 0:9. By combining two such gratings,
we obtained a grating with retardation / ¼ p, and
tx ¼ ty ¼ 0:89. These values are close to the theo-
retical predictions achieved using rigorous coupled
wave analysis [11]. Fig. 3(d) shows a scanning
electron microscope image of one of the dielectric
structures. We note the local periodicity of the
structure and the clear profile of the subwavelength
grooves.
Following the fabrication we illuminated the

structures with polarized light. Fig. 4 shows images
of the far-field intensity distributions of the trans-

mitted beams, as well the measured and predicted
intensity cross-sections for incident jRi polariza-
tion, for incident jLi polarization and for incident
linear polarization (jEini ¼ j "i). There is a good
agreement between experiment and theory, which
was calculated using Eq. (4), and far-field Fraunh-
offer intensities. For incident jRi polarization only
the zero-order and the first-order appear. The zero-
order is due to the EPO, and maintains the polar-
ization of the incident beam, whereas the first-order
is derived from the LPO and has jLi polarization.
For incident jLipolarization, the zero-order and the
�1st order appear, and the polarization of the�1st
order is jRi. In the case of incident linear polariza-
tion, we note the linear polarization of the zero-or-
der, the jLi polarization of the first-order and the
jRi polarization of the�1st as discussed above. We
note that for the grating in which tx ¼ ty ¼ 0:89 and
/ ¼ p, gE ¼ 0, consequently, all of the energy is
diffracted into the 1st and �1st orders, as expected.
Fig. 5 shows the predicted and measured dif-

fraction efficiencies for the three blazed polariza-
tion diffraction gratings for various incident

Fig. 4. Images and experimental (dots) and calculated cross-section (solid curves) of the far-field of the beam transmitted through the

blazed polarization diffraction gratings, when the incident beam has jLi polarization, when the incident beam has jRi polarization, and
when the incident beam has linear polarization, j"i.
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polarization states. The diffraction efficiencies are
normalized relative to the total transmitted inten-
sity. The different polarization-states were
achieved by rotating a quarter wave-plate in front
of the linearly polarized light emitted from the
laser. The experiments agree with the predictions.
The diffraction efficiency in the zero-order is equal
to gE. It has a different value for each of the
grating, however, for each grating, it remains
constant regardless of the incident polarization.
On the other hand, the diffraction into the 1st and
�1st orders depends on the incident polarization,
illustrating the usefulness of polarization diffrac-
tion gratings as variable polarization beam-split-
ters and light modulators.

4. Binary polarization diffraction gratings

To further examine the use of polarization dif-
fraction gratings as beam splitters and optical
switches, we fabricated a binary polarization dif-
fraction grating using a subwavelength dielectric
structure. Each period, d, (d > k), of the grating is

Fig. 6. Geometric representation of the subwavelength structure of the binary polarization diffraction grating (middle), as well as the

DGP that results from this structure (top). The pictures at the bottom are scanning electron microscope images of the dielectric

subwavelength structure.

Fig. 5. Measurements and predicted diffraction efficiencies in

the 1st, �1st and 0 orders of the metal-stripe and dielectric
blazed polarization gratings for various incident polarizations.

The different incident polarization were achieved by rotating a

quarter waveplate (QWP) in front of the linearly polarized light

emitted from the CO2 laser. The graphs show the efficiencies as

a function of the orientation of the QWP. The efficiencies are

normalized relative to the total transmitted intensity for each

grating.
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comprised of two regions. The subwavelength
grating vector in the first region pointed along the
x-axis, and the subwavelength grating vector in the
second region pointed along the y-axis, i.e.

hðxÞ ¼ 0; 0 < x < d=2;
p=2; d=2 < x < d:



ð11Þ

We fabricated the subwavelength structure on a
GaAs wafer with tx ¼ 0:95, ty ¼ 0:84, and
/ ¼ 0:45p. The structure was fabricated with
d ¼ 200 lm and Kðx; yÞ ¼ 2 lm. Fig. 6 shows a
schematic representation of the subwavelength
structure, a graph depicting the resulting DGP and
scanning electron microscope images of the sub-
wavelength structure which we had fabricated. We
note that the DGP is the same for both the RPO
and the LPO. It resembles a scalar binary p-phase
grating. Consequently the diffraction efficiencies
for both the RPO and the LPO, will be the same as
those of a scalar binary p-phase grating [12] i.e.

gRm ¼ gLm ¼ 4 sin
2 ðmp=2Þ
ðmpÞ2

: ð12Þ

Note that for a binary p-phase grating only the
odd orders appear and consequently gL0 ¼ gR0 ¼ 0.
Furthermore, Eq. (12) yields that gL;R1 ¼ gL;R�1 ¼
0:405, and gL;R3 ¼ gL;R�3 ¼ 0:045.
Fig. 7 shows the measured diffraction efficien-

cies when the incident beam has (Figs. 7(a) and
(b)) circular and (Fig. 7(c)) linear polarization, as
well as the efficiency when the transmitted beam
has passed through a circular polarizer oriented to
transmit jRi polarized light (Figs. 7(d)–(f)). We
note that when the beam does not pass through a
circular polarizer, the intensity in the various dif-
fracted orders is not dependent upon the incident
polarization, however the polarization-state of the
diffracted orders does depend on the incident po-
larization. We note that the intensity of the dif-
fracted orders on the right is equal to the intensity
of the diffracted orders on the left, indicative of
symmetrical phase structure of the DGP. Fur-
thermore the ratio between the intensity in the first
and third orders is g1=g3 � 9, in agreement with
Eq. (12), providing further verification of the bi-
nary p-phase of the DGP. In addition, for incident
jRi polarization, the experimental ratio between
the intensities in the zero-order and in the first-

order is 3.376. This agrees with the predicted ratio
of

gE=ðgLgL1 Þ ¼ jtx þ tyei/j2=ð0:405jtx � tye/j2Þ;
as predicted using Eqs. (4) and (12).
When a circular polarizer, oriented to transmit

only jRi polarized light is applied to the beam,
we notice that for incident jRi polarization (Fig.
7(e)) only the zero-order appears (this is because
gR ¼ 0Þ. For incident jLi polarization (Fig. 7(d))
only the orders other than the zero-order appear
(this is because the EPO has jLi polarization),
and for incident linear polarization (Fig. 7(f)) all
diffracted orders appear (this is due all three or-
ders being linearly polarized). Thus, by placing a
polarization modulator such as a liquid crystal
cell in front of a setup, comprising a polariza-
tion–diffraction grating and a circular polarizer,
an optical switch could be assembled for appli-

Fig. 7. Measured intensity and polarization in the various

diffraction orders of the binary polarization diffraction grating

for incident (a) jLi polarization, (b) incident jRi polarization
and (c) incident j"i polarization, as well as the intensity trans-
mitted through a combination of the binary diffraction grating

and a circular polarizer oriented to transmit jRi polarization for
(d) incident jLi polarization (e) incident jRi polarization and (f)
incident j"i polarization. The intensities are normalized so that
the maximum intensity in each graph is equal to 1.
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cations such as optical interconnects in commu-
nications.

5. Circular symmetric polarization mode switching

Until now we have discussed polarization beam
splitting and optical switching by use of polariza-
tion diffraction gratings. However, sometimes a
different geometry is required. Suppose for in-
stance, we wish to create an optical switch that
enables switching between an optical circularly
symmetric mode with a bright center, and an op-
tical circularly symmetric mode with a dark center.
This can be done with a quasi-periodic subwave-
length structure for which, hðx; yÞ ¼ xðx; yÞ þ c,
where x ¼ arctanðy=xÞ is the azimuthal angle, and
c is a constant number. The DGP of the RPO for
such an element is equal to 2ðxðx; yÞ þ cÞ. Thus the

RPO carries a vortex with a topological charge of
2 [13], and therefore it has a dark center. Fur-
thermore, since the EPO does not undergo any
phase modification, its topological charge is zero,
and it exhibits a bright center. Therefore, if we
design a quasi-periodic subwavelength structure
with hðx; yÞ ¼ xðx; yÞ þ c, choose / 6¼ p, and illu-
minate it with jLi polarization, the resulting beam
will comprise an jRi polarized vortex carrying
beam with a dark center and an jLi polarized
beam with a bright center. We can switch between
the two modes using a circular polarizer.
We realized such a quasi-periodic subwave-

length structure on a GaAs wafer, with hðx; yÞ ¼
xðx; yÞ þ p=4, yielding a grating function /g ¼
½2pr0=ð

ffiffiffi
2

p
K0Þ�½lnðr=r0Þ � x�, where r is a radial

coordinate. We chose K0 ¼ 2 lm and r0 ¼ 5 mm,
so that 5 mm < r < 8 mm and 2 lm < K <
3:2 lm, and fabricated a dielectric grating with

Fig. 8. The far-field images and calculated and measured cross-sections of the beam transmitted through the circular symmetric

polarization mode switching: (a) when the incident polarization is jLi as well as (b) the image and cross-sections of the transmitted jLi
component, and (c) the image and cross-sections of the transmitted jRi component. Also shown, (bottom), the geometry of the
subwavelength quasi-periodic structure as well as the spiral DGP caused by this element.
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retardation of / ¼ p=2. Note that for incident jLi
polarization, the transmitted beam had radial po-
larization in the near field, and that for incident
jRi polarization, the near field had azimuthal po-
larization. Fig. 8 shows far-field images and the
measured and calculated cross-sections of (a) the
transmitted beam when the incident polarization is
jLi as well as the far-field image of the (b) jLi and
(c) jRi components of the beam as obtained with a
circular polarizer. Fig. 8 also shows the geometry
of the subwavelength quasi-periodic structure as
well as the DGP caused by this element. We note
the clear vortex in the DGP. The dark center of the
vortex is evident in the measured results where we
note that the jLi component of the transmitted
beam (the EPO), has a bright center without un-
dergoing any phase modification, whereas the jRi
component (RPO) has a dark center, clearly indi-
cative of its topological charge. The results clearly
demonstrate the circularly symmetric mode
switching, which can be realized using subwave-
length periodic structures.

6. Conclusions

To conclude, we have demonstrated polariza-
tion diffraction gratings as polarization-sensitive
beam-splitters, as well as optical switches. We have
demonstrated that the application of subwave-
length quasi-periodic structures, for this purpose,

is not limited to optical switches based on linear
polarization diffraction gratings, and that more
complex designs are possible. The introduction of
space-varying geometrical phases through space-
variant polarization manipulations, enables new
approaches for beam-splitting and the fabrication
of novel polarization-sensitive optical elements.
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