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Materials and Methods 

Sample preparation 

The artificial kagome structures were formed on a SiC-6H single politype crystal 

substrate using advanced photolithographic techniques. A NiCr film was deposited on 

the substrate and overcoated with a positive photoresist. After exposing the 

photoresist through a mask, it was developed leaving a pattern on the NiCr film. A Cr 

etchant was then applied to remove the NiCr film from the exposed areas. At this 

point the photoresist was removed and the substrate was etched by a reactive ion 

etching (RIE) through the NiCr voids serving as a mask. The RIE was performed at a 

power of 250 W and a pressure of 40 mTorr with CF4 and O2 gas flow rates of 13.8 

and 1.2 sccm, respectively. The etching performed at a rate of 35 Å/min at the room 

temperature was continued until the desired depth was reached. As a final step, the 

remaining NiCr was removed with a Cr etchant. 

 

Polarization analysis 

The Stokes parameters are a set of values representing the polarization state of 

electromagnetic radiation determined by measuring the intensity of the radiative field 

through a polarizer and a retarder (29). In the experiment, we used a circular 

polarizer, i.e., a quarter-wave plate followed by a linear polarizer in different 

orientations (see Fig. S1). Let α  be the quarter-wave plate orientation and β  be the 

polarizer transmission axis orientation, the intensity can be calculated using the 

Mueller matrix as 
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Fig. S1. Experimental measurement setup. Angle-resolved thermal emission spectra at 

varying polar angle θ  are measured by a Fourier transform infrared (FTIR) 

spectrometer. The radiation polarization state is analyzed using a circular polarizer (a 

quarter-wave plate (QWP) followed by a linear polarizer (P)), and then guided by a 

flat mirror (Mf) and parabolic mirrors (Mp) with a focal length of 250 mm, via an 

angular resolution slit (S) in the focal plane of Mp and a field of view aperture (A). 
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The intensities were captured for the combinations of ( ) ( )°°= 0,0,βα , ( )°° 0,45 , 

( )°°− 0,45 , and ( )°° 45,45 . With these four measurements, we calculated the Stokes 

parameters as a function of the different intensities to be 

 ( ) ( )°°−+°°= 0,450,450 IIS , 

 ( ) 01 0,02 SIS −°°= , (2) 

 ( ) 02 45,452 SIS −°°= , 

 ( ) ( )°°−−°°= 0,450,453 IIS . 
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Experimental measurement setup 

Angle-resolved thermal emission spectra were measured by mirror optics (Fig S1). 

The sample was heated to K1773 ± , where the temperature was measured with K-

type thermocouple and controlled by a temperature controller (HeatWave Labs 

101303-04). The measurements of the emission spectra, in the range of polar angles 

θ  from °− 50  to °50 , were performed using a FTIR spectrometer (Bruker-Vertex 70) 

equipped with a cooled HgCdTe detector. The spectral resolution was set to 1cm1 − , 

the field of view was chosen as 8 mm to avoid edge effects (each sample is 12 mm 

square), and the angular resolution was selected as °1.0 . 

 

Supplementary Text 

Isotropic kagome lattice 

In addition to the artificial anisotropic kagome lattice (KL) structures, a KL with 

isotropic antennas was also realized. The isotropic KL consists of circular voids with 

a nearest-antenna distance of 6.5 µm (see Fig. S2A). Such an isotropic metamaterial, 

which is inversion symmetric (IS) in all directions (i.e., the inversion transformation 

rr −→  preserves the structure), resembles the 0=q  configuration and serves as a 

reference for the investigation of the structural lattice. Angle-resolved thermal 

emission spectra were measured by a FTIR spectrometer at varying polar and fixed 

azimuthal angles ( )ϕθ , , respectively, while heating the sample to 773 K (see Fig. 1C 

for the experimental setup). The dispersion relations ( )kω  at °= 60ϕ  and °90  of the 

isotropic KL structure are shown in Fig. S2, B and C, respectively, and exhibits a 

good agreement with the standard momentum-matching calculation 

21SPP
||
e GGkk nm ++= . Here, ||

ek  is the wavevector of the emitted light in the surface 



 5 

 

 

 

 

 

Fig. S2. (A) Optical microscope image of the isotropic KL. The rhombus represents 

the unit cell in the real space. The inset is a scanning electron microscope image of 

the circular antenna, with a diameter of 4.8 µm, 1 µm etched upon a SiC substrate. (B 

and C) Measured intensity dispersions of thermal emission from the isotropic KL 

structure along the directions of °= 60ϕ  and °90 , respectively. The lines correspond 

to the standard momentum-matching calculation. 

 

plane, SPPk  is the surface phonon polariton (SPP) wavevector, ( )nm,  are the indices 

of the radiative modes, and ( ) 





 +−+=

3
,

3
, yxyxGG 21 L

π  are the lattice reciprocal 

vectors. 

 

Local field distribution in spinoptical metamaterials 

The observed Rashba spin splitting in the 33 ×  kagome two-dimensional (2D) 

lattice is twice the one detected in the 2D square lattice with space-variant antennas 

along a specific direction (22, 23); this peculiarity lies in the geometric nature of the 

vertex-sharing triangles. In contrast to the one-dimensional (1D) rotation rate, the 

local field distribution in the KL is highly affected by the coupled nearest-neighbor 

antennas restricted by the triangular symmetry (Fig. S3B) and not by the straight line 

(Fig. S3A). Specifically, the phase accumulation of π2  along an inversion 
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Fig. S3. (A) The field periodicity of a 1D spinoptical metamaterial represented by the 

identical phases – arrows – is a2 , where a  is the structural periodicity. (B) The field 

periodicity of the 2D staggered chirality kagomé metamaterial is a . The chirality is 

denoted by the sign inside the triangle and it is positive when the arrows rotate by 

°+120  as traversing anticlockwise around a triangle, and vice versa. 

 

asymmetric (IaS) direction in the 33 ×  kagome is obtained along the half distance 

attained in the 1D geometric gradient structure. In general, the shift corresponds to the 

field periodicity; in the latter, the field periodicity is twice the structural one, whereas, 

in the former, these periodicities are identical. Hence, the Rashba dispersion spin 

splitting in the staggered chirality kagome structure is ak /2π=∆ , where La 3=  is 

the rotation period and L  is the nearest-antenna distance, while in the array with 1D 

inhomogeneity rate it is a/π . 

 

Optical Rashba effect 

In the Rashba effect, owing to the spin-orbit interaction under broken inversion 

symmetry, the spin-degenerate parabolic bands split into dispersions with oppositely 
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spin-polarized states, whose energy values are denoted by ( ) kkk RmE α±= ∗± 2/22  

(18-21). Here, k  is the electron momentum, ∗m  is the effective mass of electrons, 

and Rα  is the Rashba parameter representing the strength of the Rashba effect. The 

Rashba dispersion prescribes the momentum Rashba offset of RRk α∝∆  and the 

accompanied Rashba energy splitting of 2
RRE α∝ . 

In order to study the optical Rashba effect, we follow a specific parabola-like 

mode, governed by the spin-orbit momentum-matching (SOMM) condition 

( ) i21SPP
||
e KGGkk σσ −++= nm , when ϕ  varies (see Fig. S4A); here, 1±=±σ  is the 

optical spin corresponding to right- and left-circularly polarized light, respectively, 

and { }2,1∈i  is the index of the specific spin-dependent geometric Rashba term from 

the orientational reciprocal vectors ( )yxK 21 3
3, −=

L
π . For the −σ  solution with 

the indices ( ) ( )1,0, −=nm  and 1=i , we yield the relation 

( ) 32
2

1
2 60cos akaka RR +∆°++∆= ϕω , where Rk∆  is the Rashba splitting and 

( )321 ,, aaa  are constants. In analogy to the Rashba effect, the normalized optical 

Rashba energy is defined as the frequency differences between the minima of the 

parabolic bands at an IS direction and some ϕ , i.e., ( )ϕωωω −=∆ ISR . Since 

ISR ωω <<∆  one can obtain the relation between the optical Rashba energy and the 

Rashba splitting via ( ) 32
2

1 60cos bkbkb RRR +∆°++∆=∆ ϕω  with the constants 

( )321 ,, bbb . By utilizing the SOMM condition, we calculated ( )ϕRk∆  and yielded the 

linear relation ( )°+∝∆ 60cos ϕRk  (Fig. S4B); hence, the optical Rashba energy-

momentum splitting relation takes the well-known electronic Rashba form 

2
2

1 ckc RR +∆=∆ω  with the corresponding ( )21,cc  constants (Fig. S4C). In this manner, 
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Fig. S4. (A) The dynamics of the spin-dependent modes as the direction traverses 

from IaS to IS to IaS. The red and blue parabola-like modes correspond to ±σ  

solutions with the indices ( ) ( )1,1,0,, ±=inm . In the IS direction the modes are spin-

degenerated as shown by the black line. The Rashba splitting and the normalized 

optical Rashba energy are denoted by Rk∆  and Rω∆ , respectively; note that the 

crossing between the modes at 0=k  is obtained at a constant frequency which is ISω . 

(B) The Rashba splitting exhibits a linear dependence on the ( )°+ 60cos ϕ  parameter. 

(C) The normalized optical Rashba energy obeys the Rashba energy-momentum 

splitting relation depicted by the parabolic fitting. 

 

the SOMM is a generalized condition since it validates the fundamental Rashba 

splittings. 
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This analysis sheds light on the spin-polarized dispersion of the 33 ×  

structure at varying ϕ . Specifically, the resulting condition of ( )°+∝∆ 60cos2 ϕωR  

brings a physical insight for the maximal and minimal Rashba energies associated 

with the IaS and IS directions, respectively (see Fig. 3, A and B). 

 

Momentum-matching condition from symmetry analysis 

Let ( )t,rψ  be a vector function. Note that if we transform the coordinates by a 

translation rr' T= , the transformation that ψ  undergoes is ( )tTT ,ˆ 1rψψ −= ; if we 

transform the coordinates by a rotation (or mirroring) rr' R=  then ψ  will transform 

as ( )tRRR ,ˆ 1rψψ −=  (33). These actions define a group representation of coordinate 

transformations on the functions space. 

Consider two transformations of the Cartesian coordinate system 







=

y
x

r : (i) 

a shift to the left srr −=T , where 







=

0
2L

s  (see Fig. S5B), and (ii) a rotation of 

°120  anticlockwise by the matrix R  of 








−
−−

2/12/3
2/32/1  around the axis depicted in 

Fig. S5A. One can see that the 33 ×  KL is invariant to the combined 

transformation TRU ˆˆˆ =  so 

 ( ) ( ) ( )rrr nRTnnU == −− 11ˆ , (3) 

where ( )rn  stands for the refractive index of the metamaterial. Moreover, the action 

of R̂  and T̂  on ( )rn  commute ( ) ( ) ( )rrr nnRTnTR == ˆˆˆˆ . 

The key observation is the following: if the wave equation is invariant with 

respect to the action of some group, in order for one solution iψ  to be coupled with 
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Fig. S5. (A) The axis of rotation in the 33 ×  KL is depicted by the blue point. The 

lines show the mirror symmetry directions. The blue arrows represent the symmetric 

mode ( )1
fψ  which is invariant under mirror reflection. (B to D) T̂ , R̂ , and TR ˆˆ  

transformations of the 33 ×  KL. 

 

another solution fψ , both iψ  and fψ  must transform similarly under the action of the 

group (34). Let ( )zkti ze −= ωεψi  be a circularly polarized wave advancing along z−  

direction in free space. If we consider a circularly polarized light as a rotating in time 

linear polarization, a spin-dependent phase is gained when rotating the yx −  plane so 

iii ψψψ 3/2ˆˆ πσieRU == , where 1±=±σ  is the optical spin corresponding to right- and 

left-circularly polarized light, respectively. We are now looking for solutions traveling 

in the yx −  plane transforming as the eigenvector iψ . Since R̂  commutes with T̂ , 

such solutions should be eigenvectors of both transformations. A general 

eigenfunction of T̂  should be of the Bloch form, ( ) ( )tie ω−⋅rk
k

fru , where ( )ruk  is a 

periodic function; for simplicity, we assume that ( ) 1≡ruk , where this assumption 

does not affect the result. 

Three types of lattice modes which are eigenvectors of R̂  can be constructed 

from the Bloch functions propagating in the yx −  plane 

B C D 
T̂ R̂ TR ˆˆ

A 
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 ( ) ( )rkrkrk1
f

fffε'ψ
21 −− ⋅⋅⋅ ++= RiRii eee , 

 ( ) ( )rkrkrk2
f

fffε'ψ
21 3/23/2 −− ⋅⋅−⋅ ++= RiiRiii eeeee πσπσ , (4) 

 ( ) ( )rkrkrk3
f

fffε'ψ
21 3/23/2 −− ⋅−⋅⋅ ++= RiiRiii eeeee πσπσ , 

where the harmonic time dependence is omitted (35); here, ε'  is a linear polarization 

in the z  direction. Moreover, the aforementioned solutions correspond to eigenvalues 

of 1, 3/2πσie and 3/2πσie− , respectively. These modes will be also eigenvectors of T̂  if 

the momentum fk  satisfies the equalities 

 sksksk fff
21 −− ⋅⋅⋅ == RiRii eee . (5) 

Under these conditions we obtain that f
sk

f ψψ f ⋅= ieT̂  and 

( ) ( )( ) ( ) ( )( ) ( )j
f

skj
f

sk
f

j
f ψψψψ ff 3/2ˆˆˆˆ jiij eReTRU πξ+⋅⋅ === , where ( ) σσξ −= ,,0j  for modes 

3,2,1=j , respectively. At this point, we require that ( )j
fψ  and iψ  transform 

similarly, meaning that the eigenvalues should be equal 

 
( )( ) 3/23/2 πσπξ ii ee

j

=+⋅sk f . (6) 

When solving Eqs. (5) and (6), we obtain equation system for fk  

 ( )( ) πξσπ 2mod3/221 jRR −=⋅=⋅=⋅ −− sksksk fff . (7) 

Note that one equation in this set depends on the other so the equation system is not 

overdetermined. Moreover, mode 2 does not yield a spin-dependent solution and can 

not be considered to describe the optical Rashba effect. 

In order to set the possible solution from the two remained modes, we seek for 

an additional symmetry restriction in the investigated system. Besides to the 

aforementioned Û -invariance the symmetry group of the KL system has mirror 

symmetries as well. Hence iψ  and fψ  must transform similarly under mirror 

transformation. The circularly polarized wave iψ  transforms under a mirror 
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transformation like a 2D representation (mirroring right-handed polarized light results 

in left-handed polarized light); however, the mirror reflection preserves mode ( )1
fψ  

(see Fig. S5A), i.e., this mode transforms as the trivial 1D representation. Since iψ  

and ( )1
fψ  does not transform similarly, the coupling between them is impossible, and 

we obtain only the solution of ( )3
fψ . 

A calculation of the equation system (7) for ( )3
fψ  yields the spin-dependent 

solution of 

 nm,f Gk +







−= σ

π
π

L
L
3/

3/
, (8) 

where nm,G  is a vector of a reciprocal lattice, generated by the 0=q  KL with the 

basis vectors 







0

2L
 and 







 −
L
L

3
. Note that the spin-dependent vector is the specific 

geometric Rashba correction associated with the local field distribution in the 

33 ×  KL. This momentum selection rule obviously governs the spontaneous 

emission from a structure supporting surface wave, such that the momentum-

matching condition 

 nm,SPP
||
e Gkk +








−= σ

π
π

L
L
3/

3/
 (9) 

still holds, where ||
ek  is the wavevector of the emitted light in the surface plane and 

SPPk  is the SPP wavevector. 

 

Spin symmetry breaking in the near-field of a spinoptical metamaterial 

The reciprocity between the near- and far-fields manifests that the spin-split 

dispersion of the emitted light is a signature of a symmetry breaking in the near-field; 
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therefore, we were motivated to investigate the electromagnetic fields distribution in 

the vicinity of the 33 ×  surface. One can find in the artificial staggered chirality 

KL three building blocks – "geometric metamolecules" – consisting of differently 

oriented anisotropic nanoantennas (see Fig. S6G insets). The electromagnetic near-

field distribution was calculated by a finite difference time domain (FDTD) algorithm 

(RSoft FullWAVE). The 33 ×  kagome structure consisting of 7.21×  µm2 

rectangular voids, imbedded to a depth of 1 µm into a SiC substrate, with a nearest 

distance of 6.5 µm, was normally illuminated with circularly polarized light at a 

wavelength of 12 µm. The normal zE  fields for incident spins of ±σ  were detected at 

0.5 µm above the SiC-air interface (Fig. S6, A and B, respectively), where a spin 

degeneracy removal is observed. More particularly, a chain of vortices with 

alternating helicities along the IaS directions is revealed (Fig. S6, C to F). These 

optical vortices carry an orbital angular momentum (OAM) of l  per photon 

manifested by the spiral phase of the SPPs stemming from the spin-orbit interaction, 

where the integer number l  is the topological charge (36). The OAM of the 

"geometric metamolecules" was calculated via an overlap integral between the 

numerical phase distribution ( )ϕφie−  and a spiral phase ϕime− , where m  is an integer 

and ϕ  is the azimuthal angle. Explicitly, the weighting function of the topological 

charge is expressed by 2
mm λγ = , where ( )∑ ∫

=

−−=
2

1

2

0

R

Rr

iim
m deeN

π
ϕφϕ ϕλ , { }21, RRr ∈  is the 

radius of the path and N  is an area normalizing constant. The calculation presented in 

Fig. S6G was performed within the interval of 01 =R  and μm2.22 =R . Local OAM 

of { }1,1,2 ++−=l  and { }2,1,1 +−−  were calculated for ±σ  illuminations, respectively, 

for the sequence of the "geometric metamolecules" in the optical lattice unit cell (Fig. 
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Fig. S6. (A and B) FDTD simulations of the normal zE  field amplitudes for incident 

spins of +σ  (A) and −σ  (B). The rectangles show the unit cell of the three "geometric 

metamolecules". (C and D) Amplitude distributions of the "geometric metamolecules" 

sequence for +σ  (C) and −σ  (D). (E and F) Phase distributions of the aforementioned 

sequence for +σ  (E) and −σ  (F). (G) Local topological charge calculation of the 

"geometric metamolecules" for ±σ . The insets show optical microscope images of the 

"geometric metamolecules". The circle in (C) shows the area where this calculation 

was performed. 

 

S6G). This spin-dependent space-variant OAM along the IaS directions is associated 

with an OAM gradient (37), inducing the observed spin degeneracy removal in the 

near-field. Therefore, the spin symmetry breaking in the near- and far-fields is a 

fundamental manifestation of the space-variant OAM and the Rashba geometric 

gradient along the IaS directions in the 33 ×  KL, respectively. 
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