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In this supplementary material, we start in the first
section by calculating the Green’s functions for strati-
fied media. In the next section, the expressions for the
Green’s functions are generalized for periodic structures.
Using those Green’s functions, the thermal transfer is
calculated in such structures.

Green’s functions for stratified media:

For the calculation of thermal transfer, we need to cal-
culate the Green’s functions which determine the pro-
duced electromagnetic fields in one object (say object 1)
that result from current sources in the other object (say
object 2). For stratified media composed of a stack of
different layers (See Fig. Sla), the contribution of an in-
finitesimal current J (k,, ky) dz' to the total electric field
produced by it at its own position, denoted by 2’ in object
2, is given by:
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where poy and § refers to the P and S polarization
directions for a wave with transverse wave-vector com-
ponents of k,, k,. Note that + sign denotes the wave
with the wave-vector direction from object 2 toward ob-
ject 1. From the transfer matrix method, the electric field
produced by that element in a location different from its
own location, denoted by z in material 1, is given by:
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where p;14 refers to P polarization direction in object
1, and t§, and ¢}, refers to transmission coefficients from
2’ to z, for S and P polarizations, respectively.

Accordingly, the dyadic Green’s function is given
through the following expression:
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This exactly follows Sipe’s derivation for the Green’s
function.
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Figure S1: Schematic of (a) planar structured materials
and (b) a planar and an arbitrary shaped periodic
structure (This is the same figure as Fig. 1 in the main
manuscript)

In the simple case of a slab adjacent to air, this formal-
ism can be simplified further. In this case, we assume the
boundary between them is located at z = 0 and the ob-
servation point be located inside air at z = 0. Moreover,
we assume that a current source to be located inside the
slab at a distance z’ from the object’s surface.

Denoting the transversal wave vector by BB = k.2 +
ky,y, the total wave vector in the air and slab can be
expressed as:

k1= BB+ k.2 (S4)
ko = BB + k.2 (S5)

Also the S and P polarization directions can be ex-
pressed as:

pre = = (82— kB (S6)
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Moreover in this case, th, and t§, are simple Fresnel
coeflicients:
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So the dyadic Green’s function can easily be derived

as:

T = 2 (52— ) (52 - 120)
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with the following components:
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These components become the more known results
if k, is assumed to be zero, as shown for instance in
reference
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It is clear that these results can be easily generalized — S
to more complicated planar structures by deriving more where Resp (w, .y, 2, B, 2 ,p2+) and

general expressions for the Fresnel coefficients.

Generalization of the Green’s functions to periodic
structures:

In the general case of periodic structures (See Fig.
S1b), we have:
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where Resg (w,x,y,z,ﬂﬂ,z’,ﬁyr) and

N .
Resg (w,:c,y,z,ﬁﬂ,z’,é) are electric field responses at

position x, y, z to the P and S polarized incident plane
wave with transversal wave-vector BB and unity electric
field amplitude at position z’ and angular frequency w.
This is the modified version of Sipe’s formalism

Similarly, for the magnetic field, the following Green’s
function is defined:

5 .
Resy (w,x,y,z,ﬁﬂ,z’,§) are magnetic field responses
at position x, y, z to the P and S polarized incident
plane wave, again with transversal wave vector 55 and

unity electric field amplitude at position 2’ and angular
frequency of w.

From these, in the general case of periodic struc-

tures, for the current density of f(w,k;,kz’l,z’) =

T (@, ko, by, 20) 8 (KL, — ky) 8 (K — ky) 6 (' — 20),  the
generated electric and magnetic field components at
position z, y, and z = 0 are given by:
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We assumed the z direction to be toward the substrate
and normal to its plane. The convention used for the z
direction is also shown in Fig. S1b. In the above equa-
tions, z = 0 is chosen as the place of the substrate. In
fact for a periodic material with infinite thickness, we are
interested only in the calculation of electromagnetic fields
in this location; since by knowing the transverse compo-
nents of E and H field in this plane, we can calculate
the Poynting vector which determines the heat transfer.
This plane is shown with the bottom dashed line in Fig.
S1b.
For simplification of the later equations,
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where é; is the unity vector in direction b, which takes
on the unity vectors in z, y, and z directions in the sum-
mation. These are the electric and magnetic fields at
position z, y, and z, produced by the unity component
a of the current density at z/ = 0. Note that Resgy and
Re—>sH are the electromagnetic responses of the system
that can be obtained through the RCWA method. Con-
sequently, G“ (w,z,y, 2, kg, ky) and G (W, z,y, 2, kg, ky)

can be calculated directly from the RCWA method, as
well.

Therefore, for a general current density distribution
f(w, Zo, Yo, 20) in the substrate material, we can write E
and H at position x, y = 0, and z = 0, in the following
general form:
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where a, b denotes the three possible components of the
current density, and Ga (w,z,y=0,2=0,k;, k) and
Gb (w,z,y =0,z =0,ky,ky), are defined in the above.
Also c.c. refers to complex conjugate.

According to the above equations, the following ex-
pression for the Poynting vector is found:
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Random thermal motions of charges inside a mate-
rial generate fluctuating current densities. These cur-
rent densities, for a material that is in the thermody-
namic equilibrium at temperature 7', obey the follow-
ing correlation relation known as fluctuation dissipation

theorem
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After making a simplification using the fluctuation dis-
sipation theorem, we have:
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after interchanging the order of integrations, we arrive

at:

1 Foo
Play=0:=0)= > | e )

/ / / - / - dkxdkydk;dk;

ky= ky=
X (G_‘};(w,x,yzO,z:O,kx,ky)
?(w,m,y:O,z:O K k'))

» y Vy

x G
20=0 Jyp=—00 Jxg=—00

v i -1
X el(kw_kw)zo"'l(ky_ky)yo (ehw/ka — 1) +c.c. (S25)

which reduces to:
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Finally we obtain that:
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If the periodic material has infinite extent, the z com-
ponent of this quantity measures the total thermal trans-
fer. However, if as denoted in Fig. Slb, the periodic
material has a finite height, the Poynting vector at the
top dashed line should also be calculated. We assume
that the top dashed line be located at z = —h. Ther-
mal transfer in this case is the difference of these two
contributions. Moreover, thermal conductance can be
obtained from thermal transfer through differentiating
with respect to temperature:
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In fact, what is measured as the total heat conductance
is the average of the above function across a period, which
we show here with the same symbol:
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