
www.sciencemag.org/content/358/6369/1411/suppl/DC1 
 
 
 

Supplementary Materials for 
 

Disorder-induced optical transition from spin Hall to random Rashba effect 
 

Elhanan Maguid, Michael Yannai, Arkady Faerman, Igor Yulevich, Vladimir Kleiner,  
Erez Hasman* 

 
*Corresponding author. Email: mehasman@technion.ac.il 

 
Published 15 December 2017, Science 358, 1411 (2017) 

DOI: 10.1126/science.aap8640 
 

This PDF file includes: 
 

Supplementary Text 
Figs. S1 to S19 
References 

mailto:mehasman@technion.ac.il


 

 

2 

 

1. Disordered geometric phase metasurface: design and fabrication 

Figure S1 shows a SEM image of a disordered geometric phase metasurface (DGPM) 

composed of Si-based building blocks. Each building block is 600x600nm
2
 and 

composed of three nanorods which are designed to operate as a wave-plate, oriented at an 

angle  ,x y . The Si nanorods are 70nm wide, 300nm high and the distance between 

adjacent nanorods is 200nm. The diameter of the geometric phase metasurface (GPM) is 

200µm. All the metasurfaces were fabricated with these parameters.  

 

DGPM fabrication 

The poly-Si thin film with a thickness of 300nm was grown at a temperature of 

590C on a SiO2 (fused silica) substrate. The photoresist CSAR 6200.09 (Allresist 

GmbH) with a thickness of 190nm was deposited on the poly-Si film and baked at 150C 

for 1 minute. To transfer the pattern onto the poly-Si film, a photoresist mask was made 

using a Raith EBPG E-beam lithography system, then baked at 130C for 1 minute and 

etched using deep reactive-ion etching by F-ICP Plasma Therm system for 30 seconds. 

 

Figure S1. SEM image of the fully disordered GPM. 
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2. Spin-dependent momentum space calculation 

The optical field emerging from a geometric phase metasurface for an arbitrary incident 

polarization state inE , is given by 

       2 , 2 ,1 1
2 2

i x y i x yi i

out x y in x y in inE t t e E t t e e E e E
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 
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where    stands for the spin state, and    denotes the inner product (12). The last 

two terms are defined as the spin-flipped fields with the interaction coefficient defined by 

 1
2

i

x yt t e    , where ,x yt t  are the transmission coefficients and   is the phase 

retardation of the nano-antenna building block. The DGPMs' dimensions were 

determined using finite difference time domain (FDTD) simulations to obtain an 

efficiency of 
2

0.5   at a wavelength of 632.8nm  , to achieve both spin-flipped and 

spin-maintained states of the same field amplitude. We experimentally obtained 

2
0.62  . 

Using the aforementioned disordered local orientation function  ,x y , the 

DGPM's phase profile    , 2 ,g x y x y    was obtained. Calculation of the resultant 

momentum space intensity and phase distributions is given by

           2 22
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r rk r

r

k

where we regard each antenna as a local waveplate located at a discrete lattice point jr . 

The first term describes the momentum space of the spin-maintained component, while 

the last two terms are the spin-flipped components. The momentum space calculation of 

the spin-flipped component is depicted in figure S2, in a good agreement with the 

measured momentum space (Fig. 2D, main text). 

 

Figure S2. Momentum space calculation. Calculated momentum space intensity 

distributions of the spin-flipped component illuminated with spin-up for different 
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disorder parameter    values (0, 0.5, 0.85, 0.95 and 1, left to right). Insets show 

enlargements of the momentum space central region. Here
0k is the wavenumber for 

wavelength of 633nm. 

 

3. Polarization analysis of DGPM via Jones calculus 

We used the Jones calculus to perform the polarization analysis of the optical fields in the 

system consisting of a DGPM, polarizers and quarter-wave plates. Using this formalism, 

a polarizer rotated at an angle   is described by the matrix 

 
     

     

2

. 2

cos cos sin
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  

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 
  
 

 , 

and a quarter-wave plate rotated at an angle   by 

 
         

         
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
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  
 . 

In a similar manner, a DGPM can be described at each lattice point by the matrix 

 
   t t t1 0 cos 2 sin 2

0 1 sin 2 cos 22 2

y

i i
x x y

DGPM j

e t e
J

 
 

 

    
    

   
r . 

Thus, an experimental setup which includes a polarization generator, a DGPM and a 

polarizer-analyzer can be described by  

             1 1 2 2 . 2 2 1 . 1, , , ,out j Pol QWP DGPM j QWP Pol j inE J J J J J A E       r r r  . 

Here inE  is the Jones vector of the incident field, and    2 2exp 2j jA  r r  is the 

field apodization. The subscripts 1 and 2 denote the circular polarizer and the polarizer-

analyzer, respectively. 

 

4. Experimental setup 

Figure S3 depicts the experimental setup used to obtain our measurements. The input 

beam, generated by a HeNe laser source was spatially filtered and collimated. The 

beam’s polarization state was set using a polarization generator (linear polarizer followed 

by a quarter-wave plate), and the beam was subsequently focused on the sample. The 
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diffracted light was collected using an objective lens (Olympus SLMPlan 50X 0.45) and 

the obtained magnified image was then Fourier transformed using a second lens. The 

output beam’s polarization state was analyzed using a polarizer-analyzer or by quarter-

wave plate followed by a linear polarizer (for the weak measurement experiments). The 

obtained images were taken using a CMOS camera (Ximea MQ022CG-CM). 

 

Figure S3. Experimental setup for momentum space measurements. The focal 

lengths for lens 1 and lens 2 are 80 and 50mm, respectively. Pol. – polarizer, QWP – 

quarter-wave plate. 

 

5. Measurement of the spin-maintained component 

When illuminating a DGPM with an arbitrary input polarization state, two output fields 

are observed – a spin-flipped component as a result of interaction with the DGPM (as 

depicted in figure 2D, in the main text) and a non-interacting spin-maintained component. 

Figure S4 shows the spin-maintained momentum space measurements of DGPMs of 

different disorder strength. Note, only a bright diffraction-limited spot was observed in 

the center of momentum space, as expected for a sub-wavelength structure.  

 

Figure S4. Measurement of the spin-maintained component. Measured momentum 

space intensity distributions of the spin-maintained component illuminated with spin-up 

for different disorder parameter    values (0, 0.25, 0.5, 0.85, 0.9, 0.95 and 1, left to 

right).  
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6. Momentum space image entropy analysis 

In order to evaluate the momentum space entropy, we used Shannon entropy defined as 

 2logi i

i

H p p   (28), where ip  is the probability density function (PDF) of the 

momentum space which is derived from the far-field intensity distribution collected by a 

CMOS camera of 2048x2048 pixels. The PDF of 256 equally sized bins contains the 

normalized histogram counts of the image intensity distribution – pixel count per 

normalized intensity value. Figure S5 depicts the PDF of the calculated and measured 

momentum space intensities emerging from the fully disordered GPM (Fig. S5, A and B). 

The measured and calculated PDF of the momentum space shows good agreement with 

the theory obeying the negative exponential statistic    exp / /Ip I I I I  , as predicted 

by Goodman, for the coherent case of a fully disordered phase (29). Here, Ip defined the 

theoretical PDF, and  I k is the momentum space intensity distribution, where I is the 

mean intensity. Furthermore, the experimental PDFs for weak disorder values of

0.5,0.95  are in agreement with the calculations (Fig. S5, C to F) 
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Figure S5. Probability density functions of the momentum space intensity 

distribution. (A and B) calculated (A) and measured (B) PDFs of the momentum space 

intensities emerging from a DGPM of 1  . Red lines depict the theoretical PDF 

obeying a negative exponent statistics. (C - F) calculated (C and E) and measured (D and 

F) PDFs of the momentum space intensities emerging from a DGPM of 0.5   and 

0.95  , respectively. The intensity scale at E and F is bounded to 0.1 to focus on the 

data at the first bin.  

 

In order to evaluate the image entropy, we performed a summation defined by the 

Shannon entropy of the PDF. Figure S6 depicts the statistical distribution of the entropy 

over an ensemble of 100 different randomizations. The small deviations in the 

momentum space entropy behavior emphasize that the results are not due to a specific 

randomization process – any disordered GPM will obey a similar behavior, up to a 

standard deviation.  
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Figure S6. Momentum space image entropy statistics. Calculated momentum space 

image entropy over an ensemble of 100 different randomizations as a function of the 

disorder parameter. Red error bars depict the standard deviations.  

 

7. Photonic transition – critical exponents 

The entropy characterizes the photonic transition from weak to strong disorder. This 

transition can be described by a critical disorder parameter 1c  , and is found to obey a 

power law for entropy   cH


  


   , where   is the critical exponent. We 

evaluated the entropy over an ensemble of 100 different randomizations. The calculation 

was performed for DGPMs of various diameters as well as for several distorted 

topological charges. The photonic transition was found to depend on the size of the 

illuminated DGPM, and also on the incident topological charge. Figure S7 depicts the 

change in the transition sharpness as a function of the disorder parameter for different 

topological charges and illumination diameters (Fig. S7, insets).  
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Figure S7. Power law behavior of momentum space entropy. (A) Calculated (lines) 

space entropies for various DGPMs of different aperture sizes  D ranging from 20 m

(purple) to 200 m (black).  Inset depicts the critical exponent    as a function of the 

size of the element. (B) Calculated (lines) momentum space entropies for various 

DGPMs of different topological charges, ranging from 0l   (black) to 3l   (purple). 

Inset depicts the critical exponent    as a function of the topological charge. Blue lines 

depict the power law behavior near the critical point. Red error bars depict the standard 

deviations derived from an ensemble of 100 different randomizations. 

 

8. Formation of topological defects – continuous phase transition 

Symmetry-breaking continuous phase transitions which involve topological defects are a 

fundamental subject of research in many areas of physics including cosmology, particle 

physics, and condensed matter (26). As the system approaches the critical point of 

symmetry breaking from the high symmetry phase, the number of topological defects 

significantly increases. 

In disordered geometric phase structure, topological defects based on space-

variant Pancharatnam–Berry phase are formed. Such singular defects with spin-

dependent orbital angular momentum are presented in figure S8; the field was calculated 



 

 

10 

 

according to section 2 and was propagated using Huygens principle. Finite difference 

time domain (FDTD) simulations for fully disorder GPMs reveal the formation of spin-

dependent topological defects, retrieved from the phase of the field component in the z 

direction.  

 

Figure S8. Formation of topological defects from DGPM. (A and B) Calculated spin-

dependent phase of the field emerging from a single vortex generated by three 

nanoantennas. (C and D) Spin-dependent topological defects simulated by FDTD for full 

disorder. Black rods depict the antenna position and orientation, white circles indicate the 

helicity of the defects.  

 

By superposition of the emerging spin-flipped field from the DGPMs with a plane 

wave of circular polarization, we calculated and experimentally observed the generation 

of topological defects on the interference pattern for weak ( 0.25  ) and strong disorder            

( 1  ) (Fig. S9). The topological defects are manifested by a fork-shaped fringe, whereas 

the number of topological defects depends on the disorder parameter – strong disorder 

results in a significantly increased number of topological defects. The high number of 

defects in the vicinity of the critical point indicates a relation to continuous phase 

transition behavior in the system. 

 



 

 

11 

 

 

Figure S9. Observation of topological defects. (A - D) Calculation (A and B) and 

measurements (C and D) of the interference of a plane wave with the spin-flipped field 

emerging from weak and strong disordered GPMs. Colored inset (A and B) depicts the 

simulated (FDTD) spin-dependent phase of the field emerging from the DGPMs without 

the interference. White and red circles highlight the topological defects’ locations, 

indicated by fork-shaped fringe patterns.  

 

9. Random optical-Rashba effect – correlation functions 

The experimental observation of numerous spin-split modes obtained for the fully 

disordered  1   DGPM was analyzed using a correlation function 

             
1

I I I I I I
N

          
     

k

k k k k k k k k k , where 

 I
k  and  I

k  are the spin-up and spin-down momentum space intensities, and 

,I I  
 are their mean values, respectively. Here, k  denotes a displacement in the 

momentum space and          
2 2

N I I I I      
     

k k

k k k k k k  is a 

normalization factor. For    I I  
 k k k , a strong correlation was found (Fig. 



 

 

12 

 

S10, C and D), however, for    I I  
k k k , no correlation was found (Fig. S10, E 

and F).  

 

Figure S10. Spin-split random modes in the momentum space. (A and B) Calculated 

(A) and measured (B) difference of momentum space intensities    I I  
k k  for 

1  . Spin-up     and spin-down     are shown in red and blue, respectively. Black 

arrows highlight selected examples of correspondent spin-split modes. (C to F) 

Calculated (C and E) and measured (D and F) correlation functions of the momentum 

space intensities   I
k  and  I

k  (C and D), and for  I
k  and  I

k  (E and F).  

A single peak, the width of which is equal to the diffraction-limited spot, is clearly 

observed in cross-section (C and D). 

 

10.  Linear polarization analysis of DGPMs 

In order to emphasize that the phenomena originate from spin symmetry breaking rather 

than general polarization-dependent scattering, we studied the weak and strong disorder 

GPMs in the linear bases. We measured and calculated the momentum space intensity 

distributions of an incident linear polarization at 45˚ and -45˚ ,    45 45,L LI I k k , with 

respect to the main axis of a zero disorder GPM, whereas the emerging fields were 

analyzed by the orthogonal polarization states (Fig. S11, A to D). We calculated and 

measured the correlation functions for a full disorder structure    45 45L LI I   k k k
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and    45 45L LI I  k k k , which resulted in a strong correlation both theoretically and 

experimentally (Fig. S11, E to H). These results are in contrast to spin-based observations 

in which for    I I  
k k k  no correlation was found (Fig. S10, E and F); whereas 

for    I I  
 k k k there was a strong correlation as expected (Fig. S10, C and D), 

validating the optical Rashba effect.  

 

Figure S11. Correlation functions of random modes at linear polarization. (A - D) 

Calculated (A and B) and measured (C and D) momentum space intensities of the linear-

polarization analyzed    45 45,L LI I k k  for 1  . (E to H) Calculated (E and F) and 

measured (G and H) correlation functions    45 45L LI I   k k k and

   45 45L LI I  k k k , of the momentum space intensities. A single peak, the width of 

which is equal to the diffraction-limited spot, is clearly observed in cross-sections. 

 

 

In order to show that the symmetry breaking in weak DGPMs is spin-based rather 

than a result of general polarization phenomena, we calculated the center of the 

momentum space intensity distributions in the weak disorder for linearly polarized-

analyzed states of     45 45,L LI I k k  (Fig. S12, A and B) and compared it to the spin 

basis    ,I I  
k k  (Fig. S12, D and E). The obtained results for the different linear 

polarizations are identical as depicted by    45 45L LI I k k  (Fig. S12C), and are in 
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contrast to the spin-based calculation of    I I  
k k  (Fig. S12F), in which a PSHE is 

obtained. 

 
Figure S12. Linear polarization symmetry of weak disorder. (A - C) Calculated 

intensity patterns  45LI k  (A) and  45LI  k (B), and the difference between them (C).  (D 

- F) Calculated intensity patterns  I
k  (A) and  I

k (B), and the difference between 

them (F).   

 

11. PSHE for extremely small disorder 

We studied the onset of the PSHE, namely the transition from an ordered structure 

 0   to a structure having a small amount of disorder 0  .  As shown in figure 

S13, even for extremely small disorder, PSHE is still obtained.  

 

Figure S13. Photonic transition from order to weak disorder. (A) Calculated 

difference of the momentum space intensities    I I  
k k , demonstrating the PSHE 

emerging from an extremely weakly disordered GPM, 1210  . (B) The absence of 

PSHE in an ordered GPM. Red and blue represent the amount of right and left circular 

polarization, respectively. 
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12. Observation of the photonic spin Hall effect via weak measurement 

The experimental observation of the PSHE was achieved using quantum weak 

measurement techniques to enable an amplification of the sub-diffraction-limit beam-

shift (20,23, 24). By utilizing the weak measurement technique we measured a separation 

on the order of the diffraction-limited spot for DGPMs of different disorder strengths 

with on- axis illumination (Fig. S14). 

 

Figure S14. Weak measurement. Experimental amplification of the PSHE obtained via 

weak measurement for a DGPM of 0.25, 0.5, 0.75, 0.9, 0.95  . Images are taken at 

various polarizer-analyzer angles starting at 0 (bottom, cross polarization) and increasing 

with steps of 0.1, 0.1, 0.25, 0.5, and 1 degrees, respectively. 
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13. Weak measurement of singular points 

We studied the instability of distorted high-order singularities via weak measurement of 

singular points. By the projection of both orthogonal spin-states – the spin-flipped 

distorted vortex and the spin-maintained Gaussian beam – onto an elliptical polarization 

state, weak measurement of singular points was achieved. We compared the obtained 

results with calculations by use of Jones calculus. Figure S15 depicts the breaking of an 

OAM carrying beam of 3l   into generic singularities of 1l   at fixed post-selection 

polarizations, demonstrating disorder strength-dependent separation – repulsive vortex 

interaction.  

 

Figure S15. Weak measurement of singular points. (A – C) Saturated intensity profiles 

of the weak measurement of the singularities’ separation for 

0, 0.25, 0.5, 0.75, 0.85, 0.9   and 0.95  (left to right) and a topological charge 3l  ; 

top – measured intensity (A), middle – calculated intensity (B), and bottom – calculated 

phase (C). Polarizer-analyzer was set to a fixed deviation angle of 2˚ from the spin-flip 

state. 

14. Spin-dependent imaging through a DGPM 

We demonstrate spin-dependent imaging using a transparency-imprinted logo of the 

Technion, as depicted by figure S16A. When this transparency is illuminated with 

circularly polarized light, the spin-maintained non-interacting component is undisturbed 

and imaged as expected (Fig. S16B) while the spin-flipped imaging component breaks 

down into numerous scattered modes (Fig. S16C). 

 



 

 

17 

 

 

Figure S16. Imaging through DGPM. (A) Experimental setup schematic of the imaging 

system with an input transparency-imprinted logo of the Technion. The focal length for 

both lenses is 50mm. Pol. – polarizer, QWP – quarter-wave plate. (B and C) Spin-

maintained (B) and spin-flipped (C) components of the resulting images. 

 

15. Photonic transition due to defects in the geometric phase 

In the main text we described the transition as a function of the disorder strength    

implemented at all lattice points. An electronic spin Hall effect induced by impurities (4) 

inspires one to investigate the photonic transport due to defects in the geometric phase. 

Therefore, we studied the PSHE and the momentum space entropy that emerged due to 

variation in the number of lattice points that possessed a fully disordered geometric 

phase. For this purpose, we randomly selected nanoantennas from a uniform GPM to 

have a fully disordered orientation, where the density of the defects constituted a portion 

of the antennas comprising the DGPM (Fig. S17, A). The density of the geometrical 

phase defects    is defined as the ratio between the number of randomly selected 

nanoantennas and the total number of points in the lattice. Using the methods described 

in Section 2, we calculated the momentum space entropy of DGPMs of 100µm diameter 

at different densities of defect, ranging from 0 to 1, and observed the photonic transition 

(Fig. S17, B and C). Importantly, the transition from PSHE to Rashba effect was obtained 

at geometric phase defect densities of 1  to 1  , respectively (Fig. S17, C insets). 
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Figure S17. Momentum space entropy due to geometric phase defects. (A) DGPM 

structures with defects in the geometric phase; green and red antennas represent non-

distorted orientation and defects, respectively. (B) Calculated momentum space intensity 

distributions of the spin-flipped component. Here
0k is the wavenumber for wavelength of 

633nm. (C) Calculated momentum space image entropy as a function of the geometric 

phase defect density. Colored insets depict the calculated difference of the momentum 

space intensities    I I  
k k , demonstrating the PSHE emerging from moderated 

density of the geometrical phase defects 0 1   (left) and Rashba effect for 1 

(right). 

16. Metallic DGPM 

In the main text we demonstrated the photonic transition phenomena via dielectric 

DGPMs. Here we show that the transitional effect is also obtained from a metallic DGPM 

based on local plasmon resonances. The coupling of light to this type of metasurface is 

supported by plasmonic resonances originating from the local plasmonic mode of a nano-

hole (nanoantenna) within a structured metal surface. Figure S18 depicts the scanning 

electron microscope images of metallic DGPMs of 50μm diameter, fabricated using a 

Ga
+
 focused ion beam, where holes of 80-by-220-nm

2
 rod apertures were perforated in a 

200nm-thick Au film. 
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We illuminated the metallic DGPMs of different   with circularly polarized light 

from a 633nm He-Ne laser, and measured the emerging far-field spin-flipped component. 

A bright spot was observed in the center of momentum space for disorder parameter 

values up to 0.95  . When the disorder parameter approached unity numerous modes 

spanning the momentum space were observed. We quantify this transitional effect via the 

momentum space image entropy from the far-field measurements and observed a steep 

increase in the vicinity of full disorder, in agreement with the calculation (Fig. S18A). 

Moreover, we demonstrate the photonic transitions from weak to strong disorder by 

calculating the PSHE for 0.8   and random optical-Rashba effect for 1  , obtained 

from these structures (Fig. S18, E and F).  

 

Figure S18. Photonic transition for metallic DGPMs. (A) Calculated (line) and 

measured (red circles) momentum space image entropy. (B – D) Scanning electron 

microscope images and the corresponding measured momentum space intensity 

distributions of the spin-flipped component illuminated with spin-up for 1  (B), 

0.8  (C) and 0.5  (D). Here, the bar size is 1μm and
0k is the wavenumber for a 

wavelength of 633nm. (E and F) The difference in the calculated momentum space 

intensities    I I  
k k  shows the Rashba effect for 1   (E) and PSHE for 0.8   

(F).  
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17. Photonic transition of different lattice symmetry 

Throughout the paper, the DGPMs were based on a subwavelength cubic lattice. Here, 

we study the photonic transition emerging from the subwavelength lattices having 

different symmetry. A comparison of the momentum entropy of DGPMs based on cubic, 

hexagonal and Kagome lattices with equal diameters (200μm) and number of 

nanoantennas was performed. The calculation shows a similar behavior of the momentum 

space entropy for the different lattices (Fig. S19).  

 

Figure S19. Momentum space entropy of DGPMs based on different lattices. 

Calculated momentum space entropy of cubic (blue), hexagonal (green) and Kagome 

(red) lattices as a function of the disorder parameter. The bar size is 2μm. 
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