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§ 1. Introduction 

One of the important properties of a laser is the transverse field distribution of the 
beam emerging from the laser resonator. This field distribution determines the 
divergence of the emerging beam and how well this beam can be focused. Due to 
diffraction, the field distribution is generally not uniform, but is a combination 
of discrete transverse patterns. Each pattern of the field distribution is related 
to a specific mode or a combination of modes that propagates inside the laser 
resonator. The transverse shape of the field distribution is maintained along the 
propagation path inside the resonator and after emerging from the laser. 

Laser modes can be selected, controlled, and modified by inserting specially 
designed elements inside the resonator so as to obtain a desired laser output 
beam. These output beams from the laser could be further manipulated and 
shaped outside the resonator. The intra-cavity elements can tailor the field 
distribution of specific transverse modes, resulting in a field distribution 
which changes along the path inside the resonator, but returns to the original 
distribution after a round-trip of the resonator. Also, selection of specific 
transverse modes can be obtained by elements that introduce low losses to 
a specific desired mode, but high losses to other modes. In recent years, 
new fabrication technologies, most of which emerged from the semiconductor 
industry, enabled the realization and even mass production of intra-cavity 
elements with small feature size. This allowed the exploitation of new mode 
discrimination and mode shaping methods. 

In this article, the basics of laser transverse modes are reviewed, along with 
numerical methods to calculate them. Various mode shaping and mode selection 
techniques are presented in detail, along with experimental data. Also, the 
output beam properties, as well as applications of specially designed beams, are 
discussed. Reviews of laser modes can be found in textbooks (see for example 
Siegman [1986] and Hodgson and Weber [1997]). 

Section 2 describes transverse modes in stable and unstable resonators, as 
well as numerical and analytical methods to determine the field distributions 
of the transverse modes. Section 3 describes various methods to select specific 
transverse modes in laser resonators, along with techniques for fabricating the 
needed intra-cavity elements. The anal3^ical tools for describing the properties 
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328 Transverse mode shaping and selection [6, § 2 

of the laser output beams, along with selected applications are presented in § 4. 
Finally, § 5 presents some concluding remarks. 

§ 2. Transverse modes 

Laser resonators are generally categorized as either stable or unstable. In a 
stable resonator, a ray launched inside the resonator parallel to the optical axis 
remains inside it, whereas in an unstable resonator, the ray may bounce off 
the resonator after a few round-trips. For example, a resonator of length L 
and mirror curvatures R\ and R2 is stable if 0 <{\ - LIR\){\ - LIR2) <\, and 
unstable otherwise. Another important property of the resonator is the Fresnel 
number, given by N^^c^l'kL, where a is the resonator radius, and A the 
operating wavelength. Hodgson and Weber [1997] introduced an equivalent 
Fresnel number, which is also dependent on the curvature of the mirrors. In such 
laser resonators, the transverse modes, each having a specific field distribution, 
should reproduce themselves after each round-trip. Such self-consistent field 
distributions could be determined by solving the round-trip wave propagation 
equation of the resonator. In this section, an introduction to transverse modes of 
both stable and unstable resonators is given, along with analytical methods of 
calculating them. 

2.1. Transverse modes in laser resonators 

The round-trip wave-beam propagation equations were solved in either circular 
or rectangular symmetry to yield the Laguerre-Gaussian and the Hermite-
Gaussian transverse modes respectively (see Kogelnik and Li [1966] and 
Siegman [1986]). For cylindrical coordinates, TEM^/ Laguerre-Gaussian modes 
are characterized by p radial nodes and / angular nodes, whereas in Cartesian 
coordinates, TEM^„ Hermite-Gaussian modes are characterized by m and 
n modes in the horizontal and vertical directions respectively. 

With circular symmetry, the field distribution E(r,d) of a nondegenerate 
Laguerre-Gaussian TEM^ / mode inside a laser resonator is expressed by 

£^,/(r, 0) = ^opl'"'ll/l(p) exp(-p/2) exp(i/0), (1) 

where r and Q are the cylindrical coordinates, £"0 the magnitude of the field, 
p = lr'^lw^ with w the spot size of the Gaussian beam (see Hodgson and 
Weber [1997] for a detailed discussion), and Lj, are the generalized Laguerre 
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polynomials of order p and index / (note that for nondegenerate modes, / may 
be positive or negative). Some specific values of the Laguerre polynomials are 

4 ( p ) = l , L[{p) = l+\-p, 

L[{p) = \p^ - (/ + 2)p + \{l + 1)(/ + 2), (2) 

4(p) = (-iy5Wz^ /̂(p). 
Now, modes with the same radial index p and opposite angular index / have 
the same radial distribution (albeit with opposite helical phases). They are 
usually degenerate, and appear simultaneously, leading to a TEM^/ (degenerate 
Laguerre-Gaussian) mode with 

Epi{r, 6) = Eop'^%(p) exp(-p/2) cos(/0). (3) 

For clarity, a sign for the / value (e.g., TEMi, + 2) will indicate the nondegenerate 
modes, and the degenerate modes (where / is always nonnegative), will appear 
without a sign (e.g., TEM12). Note, in general, the intensity distribution of the 
TEM^, ±1 modes will have a circularly symmetric annular shape, whereas those 
of the TEMpi will have lobes, except for the fundamental, Gaussian-shaped 
TEMoo mode. Also, adjacent lobes will have opposite phases (Jt phase shift). 
The normalization factor for the TEM^,±/ mode is -t/ . ^l\i\)\^ whereas for the 

TEMpi mode it is J n^^ w( +/)p with SQI = 1 when / = 0 and (5o/ = 0 otherwise. 

Similarly, with rectangular symmetry, we obtain the TEM^„ Hermite-
Gaussian modes, given by 

Emn(x,y) = EoCXp[-(f + Xl)^)/2]Hm{mnm. (4) 

where x and y are the Cartesian coordinates, § = A/2X/>V, \l) = \/2ylw, the 
normalization factor is ^/l/jt and the Hermite polynomials H are 

//o(x) = 1, Hx{x) = 2x, H2{x) = 4x^ - 2, 

H3(x) = Sx^ - 12x, H4(x) = lex"^ - 48x^ + 12. 

Note, the Hermite-Gaussian (HG) modes with m,n^l are also Laguerre-
Gaussian (LG) modes, namely, 

T E M S P ^ T E M ^ G , TEM^i^ = TEM^G^), 

TEMfo^ = TEM^G )̂, TEM«G = TEM^f, 

where the subscripts (x) and (y) denote the axis connecting the two lobes of the 
TEMoi mode, and correspond to cosine or sine functions in eq. (3), respectively. 
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Generally, in stable resonators, the number of modes existing in a resonator 
increases with the Fresnel number, as the width of the resonator increases and 
the losses of all modes decrease. The Fresnel number can be controlled either 
by changing the length of the resonator, or, most commonly, by inserting an 
aperture into the resonator and adjusting its radius. When the Fresnel number is 
small the laser operates with a single fundamental mode of Gaussian shape and 
lowest losses; when the Fresnel number is high, it operates with multi-transverse 
modes. Typically, a multimode laser operation results in a relatively poor beam 
quality. When a high-quality laser beam is required, one usually operates the laser 
with the fundamental mode. However, this concomitantly results in a significant 
decrease in output power, so there is a trade-off between output power and beam 
quality. 

The unstable resonators are divided into two types, namely negative- and 
positive-branch, depending on the product {\-LIR\){\-LIR2), which is either 
negative or greater than unity, respectively. Negative-branch unstable resonators 
exhibit a focal spot in the resonator, at which there is an undesired high intra-
cavity intensity, so they are less common. As for stable resonators, the modes 
of unstable resonators are determined by solving the round-trip propagation 
equation. However, in contrast to stable resonators, the beam propagation can 
be readily approximated by geometrical optics. Indeed, unstable resonators can 
be characterized, in the geometrical limit, by two spherical waves that reproduce 
themselves after each round-trip (see Siegman [1974]). In such resonators the 
round-trip waves diverge, resulting in magnification M. This leads to a round-
trip mode loss of 1 -(1/M)^. 

A more precise determination of the mode losses and patterns requires solving 
the Kirchhoff integral directly. Siegman [1974] presented such solutions for 
various values of the Fresnel number, where he showed that the lowest loss mode 
depends on the Fresnel number. This is in contrast to stable resonators where 
the fiindamental Gaussian mode has the lowest losses for every Fresnel number. 
Moreover, the power loss per pass is lower than expected fi-om the geometrical 
approximation. This is attributed to diffraction effects that act to reshape the 
exact eigenmode in such a way as to reduce the losses below the geometrical 
value. Overall, unstable resonators with relatively large Fresnel numbers can 
operate with a single mode. Thus, they can have relatively high single mode 
output powers. 

2.2. Methods of analysis and design 

In this subsection, we describe analytical methods to determine the modes of 
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given resonator and intra-cavity elements that are needed to control or shape 
specific mode patterns. We begin with the round-trip propagation equation, given 
by 

KUn = YnUn. (7) 

where the eigenvectors Un represent the field distribution of the resonator 
modes, the power loss per pass 1 - |7„p is obtained fi*om the eigenvalues y„ 
and K represents the round-trip Kirchhoff propagation kernel. The fi*ee-space 
propagation is represented by the Kirchhoff-Fresnel integral (see Hodgson and 
Weber [1997] for details), whereas other intra-cavity elements, such as mirrors, 
lenses and phase elements are represented by appropriate operators, from which 
the round-trip operator K is obtained. 

Solving eq. (7) is equivalent to the diagonalization of a matrix operator K. 
However, when the matrix K is large, there could be a practical problem of 
diagonalizing it directly. In the following, several methods for solving eq. (7), 
as well as tailoring resonators for specific desired modes (eigenvectors Z7„), are 
presented. 

2.2.1. Fox-Li 

Probably the most commonly used method is the iterative Fox-Li method (Fox 
and Li [1962]). Here, one starts from an arbitrary field distribution (initial 
vector U = VQ) and propagates it back and forth in the resonator by applying 
repeatedly the round-trip propagation kernel K, to obtain a sequence of vectors 
Vm + \=KVm' If the initial vector VQ is represented by a linear combination 
of the eigenvectors, namely, Vo = J2n(^nUn, then consequently, the series of 
vectors Vm is given by K^ = ^„a„y^r /„ . If the eigenvalues are ordered so 
that 7i ^ 72 ^ 73 ̂  • • • ^ yiv, then for large m values, the eigenvector of the 
fundamental mode U\ will be dominant, namely, V^ ^ «i y^U\, and y\ could be 
obtained hy yi^Vm + i/Vm- Thus, after typically tens or hundreds of iterations, 
only the lowest loss fundamental mode is obtained. A lower number of iterations 
is needed if the initial vector VQ is close to Ui. However, for a multimode 
resonator, where 7i ~ 72 ~ 73 • •, a combination of all the modes, along with 
their common eigenvalue, is obtained. 

When the modes Un are orthogonal, the Fox-Li method can be extended to 
obtain the other modes, after finding the fundamental mode U\. This could 
be done by selecting a new initial vector VQ, which is orthogonal to U\ (the 
component along Ui could also be removed from other vectors in the series F^). 
In such a way, the second lowest-order mode is determined. This procedure is 
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then repeated for higher-order modes. Another method for finding several lowest-
losses modes is the Prony method, described in detail by Siegman and Miller 
[1970]. 

2.2.2. Gerchberg-Saxton 

The Gerchberg-Saxton method involves an iterative algorithm (Gerchberg and 
Saxton [1972]), with which one can calculate the field distribution at one location 
in the resonator based on the intensity or phase constraints in two locations. 
For example, for a given intensity distribution at the output and a certain phase 
constraint at the back mirror, one can determine the field distribution at any 
location in the resonator. This method is particularly usefiil for designing mode 
shaping elements that are inserted into the resonator (see for example Makki 
and Leger [1999]). A schematic diagram of the algorithm in a laser resonator 
configuration is presented in fig. 1. One starts with a field having a desired 

Phase constraint ^ c 

llntensity Ij 
I phase <fX) 

> llntensity / j 
phase (jp^r. 

Back mirror 

Propagation 

phase (Pi 

Propagation 

^if^ llntensity /̂  

Desired intensity ^ 

Output 
coupler 

Fig. 1. Laser resonator configuration including the Gerchberg-Saxton algorithm with a desired 
intensity / ^ at the output coupler and a phase constraint cp2C ^^ ̂ ^^ ^^^^ mirror. 

intensity distribution IQ and random phase at the output coupler. This field 
propagates to the back mirror, to obtain v^exp(i(p2)- Then, a phase constraint 
is imposed so that the reflected field is y/h^^piWic)- The phase constraint 
may directly depend on the incoming wave, such as for phase conjugation (see 
§§3.1 and 3.2), or perform a transformation from q)2 to a uniform or spherical 
phase. This new reflected field distribution propagates back to the output coupler, 
resulting in y/T^exp(iq)i), to which the intensity constraint ID is applied again. 
This procedure is repeated, typically hundreds of times, until I\ converges to ID-

2.2.3. Propagation-matrix diagonalization 

The propagation-matrix diagonalization method is based on directly solv­
ing the round-trip propagation equation (see eq. 7). This is done by first 
representing each of the intra-cavity elements (such as mirrors, apertures. 
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lenses and free-space propagation) with an appropriate matrix, then multi­
plying all matrices in the appropriate order to obtain the round-trip matrix. 
For example, for a simple resonator configuration with only two mirrors, 
M(round-trip) = M(free-space) * ^ (mi r ro r l ) * ^(free-space) * M(mirror2). T h e n , d iagOUal ize t h e 

matrix M(round-trip) to find the eigenvectors U, which represent the modes, and 
the eigenvalues y, and thereby the round-trip losses. 

Unlike the Fox-Li method, the propagation-matrix diagonalization method 
provides more detailed information on the number and shape of the individual 
modes in the resonator, and allows for a better physical insight. However, 
the propagation-matrix diagonalization method requires lengthy computations 
for the diagonalization, since the round-trip matrix is typically large. Some 
optimization of the computation is possible. For example, Sanderson and Streifer 
[1969] suggested an optimal procedure, which is based on a combination of two 
diagonalization techniques, yielding round-trip matrices of smaller size. Also, 
they compared between different methods of mode calculation, mainly, the Fox-
Li method and several matrix diagonalization methods. Abrams and Chester 
[1974] optimized the diagonalization method for waveguide lasers. In both cases, 
the optimization is mainly based on the appropriate selection of a basis for 
describing the modes. 

Oron, Danziger, Davidson, Friesem and Hasman [1999b] reduced the com­
plexity of the analysis by exploiting the symmetry of the resonators. They 
selected a more general basis and considered a radially symmetric laser operating 
with Laguerre-Gaussian modes, so the analysis was reduced to one-dimensional 
(similar simplification was performed for Hermite-Gaussian modes by treating 
each of the Cartesian coordinates separately). Here, the free-space propagation 
was based on the Bessel-Fourier transformation, and could include various 
azimuthal field distributions, depending on the azimuthal index / (see also 
Ehrlichmann, Habich and Plum [1993]) to yield 

Ui{r2.L) = i^^^kL-^Qxp(-ikL) 

X f Ui(ruO)Ji(krir2/L)Qxp[-ik(rl + rly(2L)]n dn, ^̂ ^ 

where k = 2jt/X. For every value of /, the integral in eq. (8) could also be repre­
sented by a matrix operator M/(free-space), namely, f//(r,I)=M/(free-space)'^/(^,0). 
In a similar manner, each of the intra-cavity elements, such as mirrors, lenses 
or phase elements, can be represented by an appropriate matrix M. Some 
representative results for a radially symmetric resonator are shown in fig. 2. 
Figures 2a-c show three sets of intensity distribution for the lowest order modes 
with azimuthal indices of / = 0, /= 1 or / = 2. Figure 2d shows the loss per pass 
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Fig. 2. Intensity distributions cross sections in the radial direction for Laguerre-Gaussian modes 
and their loss per pass as a function of N^, (a) 1 = 0, (b) /= 1, (c) 1 = 2, and (d) calculated mode 

losses as a fimction of N^. 

as a function of the Fresnel number N^ for these modes, which enables the 
prediction of the transverse mode content for a given Fresnel number and laser 
gain. 

§ 3. Intra-cavity elements and resonator configurations 

Intra-cavity elements can be incorporated into laser resonators in order to shape 
specific transverse mode patterns and to discriminate and select a specific single 
mode out of the many modes that exist in the resonator. Most mode-shaping 
methods modify the transverse field distribution of the lowest-order mode, from 
a Gaussian into another desired distribution such as a super-Gaussian or a nearly 
flat-top. Since the modified field distribution is no longer a mode of free space 
(that does not change as it propagates), the desired transverse field distribution 
is obtained only at a certain location in the resonator (for example, at the output 
coupler), whereas in other locations, the field distribution is different. 

Most mode selection methods involve discrimination and selection of a 
specific "natural" (Laguerre-Gaussian or Hermite-Gaussian) single mode by 
introducing relatively high losses to all modes except the specific desired mode. 
While doing so, the desired mode will maintain the same transverse field 
distribution at all locations within the resonator. The simplest mode selection 
method involves the insertion of a circular aperture into the resonator in order 
to obtain the ftindamental Gaussian mode. Other methods discriminate and select 
a specific high-order mode, introducing losses to all other modes including the 
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fundamental Gaussian mode. An early example of such a method was presented 
by Rigrod [1963], who isolated Laguerre-Gaussian modes in a laser resonator, 
by inserting wires into the resonator and adjusting the intra-cavity aperture 
diameter. 

In this section, both mode shaping and mode selection techniques are 
described along with experimental results. These are based on various types of 
intra-cavity elements, including specially designed mirrors, diffractive elements, 
phase elements, and polarizing elements, that can be incorporated into both stable 
and unstable resonator configurations, to produce controlled output beams. 

3.1. Graded phase mirrors 

Graded phase mirrors (GPMs) have a nonspherical phase profile. The incorpora­
tion of such mirrors into laser resonators was proposed and analyzed by Belanger 
and Pare [1991] (and Pare and Belanger [1992]) in order to obtain a shaped 
(non-Gaussian) fiindamental mode, with a predetermined field distribution at the 
output coupler. A resonator configuration with a GPM is presented in fig. 3. The 
output coupler is a plane mirror, whereas the back mirror is a GPM whose phase 
profile deviates from that of a spherical mirror of radius ro = 1 by a phase shift 
of A()9. By controlling this phase shift, one can shape the field distribution of 
the mode. In order to determine the phase profile of the GPM, one begins with 
a desired intensity distribution at the output coupler (the phase distribution at 
this point should be uniform). Then, this desired field propagates a distance of 
L/2, and the resulting phase distribution is found using the Kirchhoff-Fresnel 
diffraction integral. The phase profile of the GPM is then set as the conjugate 
of this phase, namely, a passive phase conjugate mirror for the desired mode. 

Aperture 2 
GPM 

Aperture 1 Output 
I coupler 

i 

K(p 

Gain 
medium 

-LI2 

Output 
beam 

C> 

Fig. 3. Resonator configuration with a graded phase mirror (GPM). A(j9 is the phase difference 
between the GPM profile and a spherical mirror (dashed line) of radius r^^L. (From Pare and 

Belanger [1992].) 
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2 4 6 
Fresnel number Np2 

Fig. 4. Loss per pass (1 - |yp) as a function of the Fresnel number (A/^F2) ^^ the first four modes. 
Sohd Unes depict a 6th-order super-Gaussian resonator with a GPM; dashed Hnes depict a reference 

Gaussian resonator. (From Pare and Belanger [1992].) 

In order to obtain significant mode discrimination between the shaped 
fundamental mode and the higher order modes, the length of the laser 
resonator, 1/2, should equal approximately the Rayleigh distance, namely JZMP-IX. 

With shorter resonators, the phase distribution at the back mirror is flat in 
the center and steep near the edges, leading to a complex GPM design and 
high alignment sensitivity. On the other hand, with longer resonators, the phase 
distribution is nearly spherical, so the phase shift A()9 is very small, leading to 
decreased shaping ability. 

A desired output intensity distribution for a GPM resonator could be a super-
Gaussian of order «, given by 

U{r) = exp[-(r/wr]. (9) 

A high-order super-Gaussian mode has a nearly flat-top intensity distribution, 
which better fills the gain medium than a Gaussian mode, leading to higher 
output powers. Moreover, a laser operating with a super-Gaussian mode has a 
low loss for the fundamental mode and high losses for the higher order modes. 
These losses were calculated using the Prony method (see § 2.2), and the results 
for Gaussian and super-Gaussian modes are shown in fig. 4. As evident, with the 
GPM resonator, even for relatively high Fresnel numbers at aperture 2, there is 
significant mode discrimination between the fundamental and high-order modes, 
while maintaining low losses for the fundamental mode. 

Belanger, Lachance and Pare [1992] and Van Neste, Pare, Lachance and 
Belanger [1994] performed experiments with a CO2 laser in which GPMs were 
inserted in order to select super-Gaussian modes of orders 4 and 6, and compared 
the results to reference Gaussian modes. Figure 5 shows representative results of 
the laser output power as a function of aperture diameter, for a 6th-order super-
Gaussian. Evidently, the output power first increases with aperture diameter 
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Fig. 5. Output power as a function of aperture diameter for a 6th-order super-Gaussian resonator 
with a GPM. (From Van Neste, Pare, Lachance and Belanger [1994],) 

to reach a plateau of approximately 5.1 W for a single-mode operation at an 
aperture diameter of 8 to 11 mm. The corresponding Gaussian output power 
was only 4.3 W, indicating a power increase of approximately 20% with the 
super-Gaussian. For larger aperture diameters, a multimode operation with higher 
output powers is obtained. 

Angelow, Laeri and Tschudi [1996] showed that by applying a simulated-
annealing optimization algorithm, it is possible to design GPMs with higher 
modal selectivity than obtained with the phase conjugation approach. How­
ever, this concomitantly implies somewhat higher fundamental mode losses. 
Paakkonen and Turunen [1998] designed and analyzed resonator configurations 
with graded phase (aspheric) mirrors, which operate with Bessel-Gauss modes, 
and compared their mode losses with those of other Bessel-Gauss resonators. 

3.2. Diffractive elements 

Diffractive optical elements can transform one wavefi*ont into another, so they 
are potentially useful for mode shaping. Leger, Chen and Wang [1994] replaced 
the back mirror in a laser resonator with a diffractive mirror in order to shape the 
mode intensity distribution. This mirror, designed in a similar manner to passive 
phase conjugate GPMs, is nearly flat and has a maximal phase variation of In, 
so the phase profile includes many In steps. The diffractive mirror was designed 
to form a square 20th-order super-Gaussian mode, and was incorporated into an 
Nd:YAG laser resonator. The experimental output profile results are shown in 
fig. 6. A nearly flat-top square was obtained, as expected for a super-Gaussian 
profile. 
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Fig. 6. Measured output intensity profile fi-om an Nd:YAG laser with a dififractive mirror. (From 
Leger, Chen and Wang [1994].) 

Mode 

selecting Aperture? ^^^^^..^^ 

element 

Aperture 1 O " * " ' 
• coupler 

Gain 
medium 

|_^ Output 
beam 

: > 

r 
Fig. 7. Resonator configuration with a flat output coupler, a diffractive back mirror, and an additional 

intra-cavity diffractive element. (From Leger, Chen and Dai [1994].) 

As for the laser resonator with a GPM, the length of the resonator with 
a diffractive mirror should be comparable to the Rayleigh distance. Thus, 
relatively long resonators are required. Leger, Chen and Dai [1994] proposed 
and demonstrated the insertion of an additional intra-cavity diffractive grating, 
which allows for high modal discrimination, yet with shorter resonator lengths. 
A typical resonator configuration is shown in fig. 7. The output mirror is simply 
flat, the back mirror is a diffractive mirror, and the internal diffractive phase 
grating is placed approximately in the middle of the resonator. The diameters of 
two apertures in the resonator are so chosen that negligible loss is introduced 
to the fundamental mode, but high losses to other modes. Typically, the internal 
diffractive element is a sinusoidal phase grating of the form exp[iwsin(2:/r/gx], 
where m is the modulation index and/g is the spatial fi-equency of the grating. 
Figure 8 shows the calculated modal threshold gain (given by l/|y|^) for the 
second-order mode in a specific resonator geometry, whereas for the fiandamental 
mode it is nearly unity; for higher-order modes the threshold gain would 
of course be higher, so it need not be considered. As evident, the modal 
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0 10 20 30 
Grating frequency [1/mm] 

Fig. 8. Calculated modal threshold gain for the second order mode, for a laser with an internal 
diflfractive siriusoidal grating. (From Leger, Chen and Dai [1994].) 

threshold gain, which indicates the modal discrimination, is low for very low 
and very high grating frequencies, but reaches a maximum of approximately 2.5 
at a grating frequency/g ?̂  6 mm"^. This could be understood by considering the 
field at the diffractive mirror. This field consists of a multiplicity of near-field 
patterns resulting from several different orders of the internal grating that are 
separated by Az2/g. For very low grating frequencies (typically/g < 3 mm~^), 
the patterns greatly overlap, leading to relatively low mode discrimination. 
For very high grating frequencies (typically/g > 10 mm"^), there is little, if 
any, overlap, leading to relatively low mode overlap between the diffraction 
patterns, again leading to very low mode discrimination. For moderate grating 
frequencies (typically 3mm~^ </g < lOmm"^) there is partial overlap between 
the diffraction patterns, and mode discrimination becomes effective. With such 
mode discrimination, it is possible to obtain output with a super-Gaussian profile 
from a relatively short laser resonator. 

Chen, Wang and Leger [1995] also investigated laser resonators with diffrac­
tive mirrors that operate with single high-order modes. The high-order modes 
were selected by inserting wires into the resonator, so as to introduce high losses 
and suppress the fundamental and low-order modes, while hardly affecting the 
loss of the desired high-order mode. The second-order mode was obtained by 
inserting a single wire along the j-axis, leading to a mode corresponding to the 
TEMoi mode. Some representative results are shown in figs. 9 and 10. Figure 9 
shows the near- and far-field intensity distributions of the output beam. The 
nearly zero intensity in the center in both the near- and far-field patterns indicates 
that the two lobes have opposite phases. Similarly, by inserting another wire 
along the x-axis, a mode corresponding to the Hermite-Gaussian TEMn mode 
(or the Laguerre-Gaussian TEM02 mode) was obtained. Figure 10 shows the 
measured modal threshold gain (given by 1/| yp) for the fundamental mode and 
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Fig. 9. Intensity distribution and cross sections for a laser operating with a wire to select the second 
order mode (denoted TEMQI) : (a) experimental near-field intensity distribution; (b) calculated near-
field cross section; (c) experimental far-field cross section. (From Chen, Wang and Leger [1995].) 
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Fig. 10. Measured modal threshold gain of the ftmdamental (denoted TEMoo) and two higher-order 
modes (denoted TEMQI and TEMn), as a function of output aperture diameter. Note, these modes 
are not the Hermite-Gaussian modes, but specific to the super-Gaussian resonator. (From Chen, 

Wang and Leger [1995].) 

the two higher-order modes as flinctions of the aperture diameter. Evidently, high 
modal discrimination can be obtained. 

Leger, Chen and Mowry [1995] also analyzed a pseudorandom phase plate 
internal diffractive element. The pseudorandom phase plate was designed with 
the Gerchberg-Saxton method to have a high bandwidth, so as to obtain higher 
mode discrimination than with the sinusoidal phase grating. Such pseudorandom 
phase plates are generally difficult to realize and more sensitive to misalignment. 
Napartovich, Elkin, Troschieva, Vysotsky and Leger [1999] suggested an internal 
diffi-active element having the form of a simple phase step. Calculations showed 
that high modal discrimination with low fundamental-mode losses could be 
maintained. Lin and Wang [2000] analyzed laser resonators in which one of the 
mirrors was flat in the center, and had sinusoidal phase grating at the edges. 
By properly choosing the size of the central region and the spatial frequency of 



6, § 3] Intra-cavity elements and resonator configurations 341 

(a) (b) 

Fig. 11. Near- and far-field experimental results for a laser designed to produce a "X" intensity 
distribution at the far field. (From Zeitner, Wyrowski and Zellmer [2000].) 

the phase grating, a nearly flat-top output beam with uniform phase could be 
obtained. 

Zeitner, Wyrowski and Zellmer [2000] investigated a different approach in 
order to obtain a desired laser output intensity distribution at the far field. They 
replaced the back mirror of the laser resonator with a diffractive mirror, in order 
to obtain an intensity distribution which is the Fourier transformation of the 
desired distribution. In order to introduce the appropriate phase to the emerging 
output beam (which has a uniform phase), another external phase element was 
placed adjacent to the output coupler. The far-field pattern was then simply 
obtained by a lens. The experimental results for the near and far fields are shown 
in fig. 11. A A -̂shaped far-field pattern is obtained, albeit with some blurring 
effects attributed to inhomogeneous pumping and nonlinear effects. 

3.3. Binary phase elements 

Phase elements can change the phase distribution of an incident beam, just as 
diffractive elements can. The feature sizes in phase elements are significantly 
larger than those in diffractive elements, thereby alleviating fabrication concerns. 
In this subsection, mode-selecting binary phase elements, which consist of only 
two phase levels, are described along with experimental results in different 
resonator configurations. 

The simplest method to selectively attenuate certain regions of the intensity 
distribution of a mode and thereby discriminate it from other modes is to 
insert some absorbing elements such as wire grids into the laser resonator. 
Such elements introduce losses by absorption, and they heat up, so they are 
relatively inefficient. Better efficiency can be obtained with non-absorbing phase 
elements that introduce the desired losses by diffraction and interference. Hence, 
we consider how binary phase elements can be exploited to introduce losses to 



342 Transverse mode shaping and selection [6, §3 

Back 
mirror 

Aperture OutP"* 
coupler 

DPE, 

Gain 
medium 

^ dm 

Output 
beam 

^ 

Fig. 12. Laser resonator configuration with a DPE inserted next to the output coupler. 

specific modes, to discriminate between many modes, and to select one that will 
exist in the laser resonator. 

Kol'chenko, Nikitenko and Troitskii [1980] replaced the absorbing wires by 
phase-shifting masks in order to select high-order transverse modes. The phase-
shifting masks were designed to have a nearly n phase shift along narrow lines 
instead of wires, while no phase shift was introduced to other areas. These phase 
masks were ft)und to introduce relatively low losses to the desired mode, while 
introducing high losses to other modes. Moreover, the mode discrimination was 
higher compared to wires. 

Different and more general binary phase elements, useful for selecting only 
one desired high-order transverse mode, were developed by Oron, Danziger, 
Davidson, Friesem and Hasman [1999a]. They inserted binary discontinuous 
phase elements (DPEs), designed to match the phase distribution and selectively 
reverse the phases of the desired mode. Because DPEs have a specific phase 
distribution with sharp phase changes, the insertion of DPEs into the laser 
resonator results in minimal losses for a desired transverse mode but high losses 
to others. 

Typically, the DPE is inserted near one of the resonator mirrors, preferably 
near the output coupler, as shown in fig. 12. The DPE is designed to ensure that 
discontinuous phase changes of either 0 or JT occur at the interfaces between 
adjacent parts of a desired mode distribution, where the intensity is very low. 
Specifically, the DPE designed to select the azimuthal index / introduces an 
angular-dependent phase shift, of the form 

0 3jr/2 + Ijim > IB > K/1 + Inm, 

5K/2 + 2jTm > 16 > 3jt/2 + Ijzm. 
m integer. (10) 

Note that for every (positive) value of /, a singular point appears in the origin 
of the DPE, which corresponds to the zero intensity in the origin for a TEMpi 
mode with / ^ 0. DPEs could also be designed to select the radial index/?. Some 
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Fig. 13. Representative DPEs: (a) designed to select TEMQI; (b) designed to select TEM02; 
(c) designed to select TEM20. 

representative DPEs, for selecting the TEMQI, TEM02 or TEM20 modes, are 
shown in fig. 13. 

As a result of passing through the DPE, adjacent spots and adjacent rings of 
the field distribution in the desired mode, which normally have opposite phases 
(jr phase shift), will now have the same phase. The output mirror then reflects 
the modified mode distribution so it passes once more through the DPE, and all 
parts of the mode field distribution revert back to their original values. This is 
due to the fact that the total phase change introduced by the DPE is 0 or In. 

If the distance d between the DPE and the mirror is sufficiently short compared 
to the resonator length L (i.e., d<^L), then the overall distribution of the desired 
mode does not change as it passes through the DPE twice in a round-trip. 
Specifically, the phase change introduced by the first passage is canceled by 
the return passage. However, all other modes, whose intensity distributions 
are different, suffer a sharp phase change at locations where their intensity 
is typically strong. Since ( i>A, this leads to a strong divergence, where the 
phase change introduced by the first passage through the DPE is no longer 
canceled by the phase change introduced by the return passage. As a result, 
all modes except the desired mode suffer a loss, and most, if not all, are 
suppressed. Some modes, which are higher harmonics of the desired mode, may 
be unaffected by the DPE, but could easily be suppressed by a simple aperture. 
Finally, by placing the DPE next to the output coupler (as in fig. 12), all parts 
of the desired mode distribution are in phase, so that the far field of the output 
beam intensity has a high central peak, with some side-lobes. 

Several theoretical and experimental representative results are presented in 
figs. 14-17. Figure 14 shows results with an Nd:YAG laser in which a DPE 
designed to select the TEM02 mode (such as shown in fig. 13b) was inserted next 
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Fig. 14. Theoretical and experimental intensity distributions that emerge from an Nd:YAG laser in 
which a DPE was incorporated to obtain the TEM02 mode: (a) theoretical near field; (b) experimental 
near field; (c) theoretical far field; (d) experimental far field; and (e) theoretical (solid line) and 
experimental (dashed) cross sections along the center of the far fields. (From Oron, Danziger, 

Davidson, Friesem and Hasman [1999a].) 

to the output coupler. The DPEs were formed by means of photoHthographic and 
etching processes on fused silica, and antireflection (AR) coated. The length of 
the resonator was 60 cm. Figure 14a shows the theoretical near-field intensity 
distribution as calculated by eq. (3). The corresponding experimental near-
field intensity distribution detected with a CCD camera is shown in fig. 14b. 
Both show the expected four lobes. Figure 14c shows the theoretical far-field 
intensity distribution obtained after applying a Fourier transformation acting on 
the absolute value of the near-field distribution (i.e., all four lobes are in phase). 
Figure 14d shows the corresponding experimental far-field intensity distribution. 
Finally, fig. 14e shows the corresponding central cross-sections of the far-field 
intensity distributions. As evident, there is a strong central peak, indicating 
that all four lobes of the near-field distribution are in phase. Using the DPE 
to make the laser operate with the TEM02 mode, the output power was 3.5 W, 
with an internal aperture set at a = 1.1 mm (i.e., N^ = 1.9). This was higher than 
the output power fi-om the laser operating with the single fundamental mode 
(TEMoo), which was obtained by reducing the initial aperture to a = 0.7 mm 
(i.e., 7VF = 0.77). 

In a similar manner, the Laguerre-Gaussian TEM03 and TEM04 modes were 
selected. The near- and far-field intensity distributions fi-om a laser operating 
with these modes are shown in fig. 15. Here again, we note the many lobes in 
the near field and a high central peak in the far field. Single high-order modes 
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Fig. 15. Experimental intensity distributions that emerge from an Nd:YAG laser: (a) TEMQS near 
field; (b) TEMQS far field; (c) TEM04 near field; (d) TEM04 far field. 
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Fig. 16. Experimental intensity distributions that emerge from a pulsed (q-switched) Nd:YAG laser 
in which a DPE was incorporated to obtain the TEM02 niode: (a) near field; (b) far field. 

were also obtained with a lamp-pumped NdiYAG laser which was pulsed by 
applying electro-optical g-switching. Results for the TEM02 mode operation, 
with an output energy of 15mJ per pulse, are shown in fig. 16. In comparison 
with the fundamental Gaussian mode operation, the output energy was less than 
lOmJ per pulse. 

Figure 17 shows results fi*om a CO2 laser with a DPE inserted to select the 
TEMoi mode (such as shown in fig. 13a). Figure 17a shows the theoretical 
near-field intensity distribution, which was calculated by eq. (3). Figure 17b 
shows the corresponding experimental intensity distributions obtained with a 
pyroelectric camera. Both results show the expected two lobes. Figures 17c,d 
show the theoretical and experimental far-field intensity distributions, with a high 
central peak and two low side-lobes. Finally, fig. 17e shows the corresponding 
central cross-sections of the far-field intensity distributions. Inserting an internal 
aperture set at a = 4mm (i.e., A^F = 2.5), an output power of 3.7 W was obtained, 
with 80% of the power concentrated in the central lobe. This was higher by more 
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Fig. 17. Theoretical and experimental intensity distributions that emerge from a CO2 laser in which 
a DPE was incorporated to obtain the TEMQI mode: (a) theoretical near field; (b) experimental 
near field; (c) theoretical far field; (d) experimental farfield; and (e) theoretical (solid line) and 
experimental (dashed) cross sections along the center of the far fields. (From Oron, Danziger, 

Davidson, Friesem and Hasman [1999a].) 

than 50% than the output power of the single fundamental mode (TEMQO), which 
was obtained by reducing the aperture to a = 3.4mm (i.e., A^F = 1-8). 

The performance of the DPEs was compared to that of absorbing wires of 
various thicknesses. The maximal single-mode TEMQI power of the CO2 laser, 
obtained for a wire diameter of 75 |im, was 20% lower than with the DPE, 
confirming the advantage of the phase elements. 

3.4. Spiral phase elements 

Spiral phase elements (SPEs) introduce a phase shift of exp(i7V0), where 6 is the 
azimuthal angle, to the beam passing through them. Representative examples 
of SPEs are shown in fig. 18. Figure 18a shows an SPE with N=\, and 

Fig. 18. Spiral phase elements (SPEs) with (a) A^=l and (b) 7V = 
represent In phase shifi:s. 

2. The height discontinuities 
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fig. 18b shows an SPE with Â  = 2, where N represents the number of In phase 
discontinuities. The height discontinuities needed to obtain a Ijt phase shift 
per passage {An phase shift in reflection) are A for a reflective element and 
X/{n - 1) for a transmittive element {n is the refractive index). As evident, phase 
singularities appear in the origin of the SPEs. 

Beijersbergen, Coerwinkel, Kristiansen and Woerdman [1994] exploited SPEs 
in order to transform Gaussian beams into helical beams outside the laser 
resonator. This transformation generally results in a combination of helical 
beams of different helicity. For example, a Gaussian beam incident on an SPE 
with N=\ results in 78% of the power in a TEMo,+i beam, and the rest of 
the power in other high-order helical beams. The degradation in efficiency is 
attributed to different intensity distributions of the original and transformed 
beams, so in general, the efficiency is higher as the intensity distribution of the 
original and transformed beams are closer, and it could reach 100% for beams 
having the same intensity distribution (such as the TEMo,+i and TEMo,-i). 

A helical mode can be formed inside a laser resonator, so a helical beam 
would emerge directly from the laser. Harris, Hill, Tapster and Vaughan [1994] 
exploited a helical laser mode operation based on coherent intra-cavity coupling 
and summation of two nonhelical modes. Sherstobitov and Rodionov [2000] 
proposed to apply SPEs in order to select helical modes in unstable resonators. In 
this case the SPE replaces the output coupler mirror, and a curved roof reflector 
serves as the back mirror. Calculations predicted that the emerging beam is 
indeed nearly helical. 

Oron, Danziger, Davidson, Friesem and Hasman [1999b] applied SPEs inside 
laser resonators in order to discriminate and select high-order helical Laguerre-
Gaussian modes. In this approach, based on azimuthal mode discrimination, 
the SPEs are essentially lossless for the desired high-order mode, but introduce 
high losses to all other modes, especially to the fundamental Gaussian mode. 
The mode discrimination removes the degeneracy and separates helical modes 
with opposite / (angular momentum). The SPEs, in essence, change the phase 
of a wavefront passing through them, in accordance to either exp(+L/V0) or 
exp(-i7V0). 

Three laser resonator configurations with SPEs are shown schematically in 
fig. 19. Figure 19a shows the basic laser resonator configuration with the two 
SPEs adjacent to the resonator mirrors. Alternatively, reflective SPEs can replace 
the mirrors. The first SPE changes the angular mode index of the mode passing 
through it twice by -IN, i.e., the mode of angular index / changes to I-IN 
and the second SPE changes it back to /. With these SPEs the modes with 
an angular index of l = -\-N wiU be changed to those with l = -N. As a result. 
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Fig. 19. Laser resonator configurations with SPEs: (a) a configuration with two SPEs, each placed 
adjacent to a laser mirror; (b) a configuration with a single SPE, placed next to the output coupler, and 
a cylindrical lens (which reverses the angular phase) focused on the back mirror; (c) a configuration 
with an added external cylindrical lens, to form helical beams. The angular indices are indicated 

along the round-trip (second trip in parentheses). 

since modes of opposite / have the same intensity distribution, only these modes 
will maintain the same distribution before and after passing through the SPEs. 
However, the radial distribution for the other modes will have the form of a 
combination of Laguerre-Gaussian modes, each with a different angular index /, 
so they will be wider, and the losses for all modes having I ^N will be higher. 
Thus, in accordance to the design of the SPEs, it is possible to select a specific 
mode that will propagate inside the laser resonator. Moreover, it is possible to 
separate two TEM^, ±i modes with opposite angular indices, so as to lead to a 
pure TEM^, +/ distribution. Specifically, the mode will be linearly polarized with 
a field distribution of the form given by eq. (1), i.e., doughnut-shaped, rather 
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than that of TEM^/ of the form in eq. (3), i.e., a distribution with distinct and 
separate lobes. 

Figure 19b shows a laser resonator configuration in which one of the SPEs 
is replaced by an element that reverses the angular phase (such as a cylindrical 
lens focused on the resonator mirror, or a Porro prism). In this configuration, 
each passage through the SPE changes the angular index of the mode passing 
through it by -N, and the angular phase-reversing element simply reverses the 
sign of the angular index. Here again, the Laguerre-Gaussian radial distribution 
is maintained after each round-trip only for those modes having an angular 
index l=N. For other modes, however, the radial distribution is wider, resulting 
in significantly higher losses. As evident from figs. 19a,b, the emerging laser 
beam passes through the SPE only once. As a result, the phase distribution of 
the output beam is constant. Thus, it converges to a relatively small single lobe 
in the far field, with no need for any external element. This concomitantly leads 
to an improvement in M^, as will be discussed in sect. 4. 

Alternatively, by replacing the back mirror with an output coupler and adding 
an external cylindrical lens (fig. 19c), it is possible to obtain the internal mode 
pattern outside the laser. Such configuration was applied by Oron, Davidson, 
Friesem and Hasman [2000b] to form pure helical beams. This could also be 
obtained by inserting a beam splitter inside the resonator so it will serve as 
an output coupler for getting the internal beam out of the resonator. Here, the 
back mirror is replaced with a reflective SPE, which changes the phase of the 
wavefront upon reflection by exp(+2iA^0) for a desired helical mode with l=N. 
Thus, a helical mode with phase exp(-i/0) is converted into exp(+i/0) after 
reflection by the SPE. The cylindrical lens, which is located inside the resonator 
and focused on the output coupler, inverts the helicity of the mode back to 
exp(-i/0) after a round-trip, to ensure self-consistency of the desired helical 
mode. The beam emerging fi-om the resonator is collimated by another external 
cylindrical lens, so its distribution will have the same form as the intra-cavity 
helical mode pattern. Note that the helicity of the SPE determines the helicity 
of the helical mode in the laser resonator. Consequently, by designing the SPE 
with a specific helicity, it is possible to control the helicity of the helical beam 
emerging from the laser. 

In all three configurations, the insertion of an aperture inside the resonator 
ensures that the laser operates with the lowest-order helical mode, i.e., TEMo,+/. 
In order to determine the aperture diameter, the mode discrimination for such 
resonator configurations was calculated by the matrix-diagonalization method. 
Due to the circular symmetry of the resonator, the usually complex matrices, 
based on Bessel-Fourier transformation, become simpler (see sect. 2.2.3). The 
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Fig. 20. Diffraction losses in a round-trip for various Laguerre-Gaussian transverse modes as a 
function of the Fresnel number NY=a^lXL. The bold curves represent the TEMo,+1 mode: (a) laser 
configuration with no SPEs; (b) laser configuration with a single SPE oiN=\ and a phase reverting 
element, inserted into the resonator. (From Oron, Danziger, Davidson, Friesem and Hasman [1999b].) 

calculated results are presented in fig. 20. The power loss per round-trip as 
a fiinction of the Fresnel number A'̂ p is shown for the different modes in the 
laser resonator. Figure 20a shows the losses for a laser resonator configuration 
without any SPEs, whereas fig. 20b shows the losses for a configuration with 
one SPE of Â  = 1, and a phase-reversing element. Evidently, the losses of the 
modes with / = 1 are not affected by the SPE, while all other modes (including 
the ftindamental TEMQO mode) suffer very high losses. Thus, laser operation 
with a single high-order mode can be obtained with a Fresnel number of 
approximately 2, which is significantly larger than that of a laser operating with 
the fijndamental Gaussian mode. 

An SPE was incorporated into a CO2 laser resonator configuration with a 
cylindrical lens, such as shown in fig. 19b. The laser was a discharge-pumped 
CO2 laser whose length was 60cm, the SPE was formed fox N=\ on GaAs 
substrates by means of a 16-level photolithographic process and the cylindrical 
lens of ZnSe had a focal length of 7.5 cm. The SPE and the cylindrical lens had 
AR coating for A= 10.6 [xm. A variable aperture, inside the laser resonator, was 
adjusted until the emerging beam contained only one mode, leading to a Fresnel 
number of 2. 

The results are shown in fig. 21, along with the corresponding calculated 
results from eq. (1). Figure 21a depicts the calculated laser output near-
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Fig. 21. Theoretical and experimental intensity distributions that emerge from a CO2 laser in 
which a SOE with A^= 1 was incorporated to obtain the TEMo^+1 mode: (a) theoretical near field; 
(b,c) experimental near field; (d) theoretical far field; (e,f) experimental far field. (From Oron, 

Danziger, Davidson, Friesem and Hasman [1999b].) 

field intensity distribution corresponding to the TEMo,+i mode. Figures 21b,c 
present the corresponding experimental near-field pattern and contour plot. The 
expected doughnut-shape distribution is clearly evident in both calculated and 
experimental results. The nonuniformities in the experimental distribution arise 
fi-om the 16-level discontinuities, caused by the Jtl^ phase steps. Figure 2Id 
depicts the theoretical far-field laser output intensity distribution, which is 
calculated by the Fourier transformation of the near-field pattern with a uniform 
phase. Figures 2 le,f depict the corresponding experimental far-field pattern and 
contour plot. The excellent agreement between the theoretical and experimental 
far-field patterns is evident, indicating that all parts of the near-field pattern are 
in phase. 

Also, opening the aperture to allow for higher-order transverse mode op­
eration, and carefiilly adjusting the resonator length L so as to control the 
longitudinal modes, lead to laser operation with high-order modes. This is 
attributed to the coupling between longitudinal and transverse modes in such 
a CO2 laser. The laser output near-field intensity distributions corresponding to 
these higher modes are shown in fig. 22. As evident, the helical phase causes 
spiral-like patterns, and the higher the mode order, the higher number of lobes 
in the laser output near-field intensity distributions. 

SPEs were also incorporated into an NdiYAG laser resonator. The laser 
resonator configuration included two SPEs, as shown in fig. 19a. The laser 
was a flashlamp-pumped NdiYAG laser whose length was 60 cm, and both 
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Fig. 22. Near-field intensity distributions corresponding to higher-order modes in a resonator with 
a SPE: (a) second-order mode with four lobes; (b) third-order mode with six lobes. 

Fig. 23. Experimental intensity distributions that emerge from an Nd:YAG laser with SPEs 
that operated with the TEMQ, +1 mode and without SPEs that operated with the fimdamental 
TEMQO mode: (a) TEMo,+ i near field; (b) TEMQO near field; (c) TEMo,+1 far field; and (d) TEMQO 

far field. (From Oron, Danziger, Davidson, Friesem and Hasman [1999b].) 

SPEs were formed for A/̂ = 1, on fiised silica substrates in a single-stage etching 
process using a gray-scale mask, and AR coated for A= 1.06 |im. Here again, 
an internal aperture was varied in order to achieve single-mode operation. The 
experimental results with the NdiYAG laser are shown in fig. 23. Figure 23a 
presents the laser output near-field intensity distribution, corresponding to the 
TEMo,+i mode, with the expected doughnut-shaped distribution. Figure 23b 
depicts the near-field intensity distribution, corresponding to the fimdamental 
TEMoo mode pattern (with no SPEs). Figure 23c depicts the corresponding far-
field intensity distribution, where the single main lobe is evident, again indicating 
that all parts of the near-field pattern are in phase. Figure 23d depicts the far-
field pattern fi-om a laser operating with the fimdamental TEMQO mode, whose 
cross-section area is, as expected, similar to that from a laser operating with 
the higher-order TEMo,+i mode. As evident, there is some asymmetry in the 
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Fig. 24. Near- and far-field intensity distributions of a helical beam: (a) experimental near 
field; (b) experimental far field; (c) calculated and experimental near-field cross sections; dashed 
lines, experimental results for the x and y axes; solid lines, calculated results; (d) calculated and 

experimental far-field cross sections. (From Oron, Davidson, Friesem and Hasman [2000b].) 

intensity distributions, which is attributed to the nonuniformity of the SPEs. An 
output power of 5.2 W was obtained when the laser operated with the TEMo,+i 
mode, which was higher by up to 50% with respect to that obtained from the 
same laser operating with the TEMQO mode and no SPEs. 

The resonator configuration shown in fig. 19c was experimentally tested 
with a linearly polarized discharge-pumped CO2 laser, operating with a single 
longitudinal mode. The reflective SPE was fabricated on a silicon substrate in a 
multistage etching process, to form 32 phase levels with a combined depth of A, 
which corresponds to A/̂ = 1. The depth accuracy in the fabrication process was 
less than 3% and the RMS surface quality was better than 20 nm. Its reflectivity 
was better than 98%, adequate to serve as a laser reflector mirror. The diameter 
of the laser tube was 11 mm, and the length of the laser was 65 cm. The intra-
cavity cylindrical lens ( / = 12.5 cm) was focused on the concave (r = 3 m) output 
coupler, while an identical lens was positioned outside the cavity to collimate 
the output beam. 

Figure 24 shows the near- and far-field intensity distributions of a helical 
beam that emerges from the laser after passing through the external cylindrical 
lens. The near-field distribution, shown in fig. 24a, had the expected doughnut 
shape, albeit with some distortions, due mainly to imperfections in the fabrication 
process of the SPE. The output power was 1.2 W. The corresponding far-
field intensity distribution, shown in fig. 24b, was obtained by focusing the 
output beam with a spherical lens ( / = 50cm). Here again the beam was 
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doughnut shaped. The x and y cross-sections of the near- and far-field intensity 
distributions, compared to the calculated cross-sections derived from eq. (1), are 
given in figs. 24c and 24d, respectively. As evident, there was good agreement 
between the predicted and experimental results, including the low intensity at the 
center. As shown, there was some asymmetry between the x and y cross-sections 
of the intensity distributions, which is due to some astigmatism caused by the 
intra-cavity cylindrical lens. The intensity distribution at other planes maintained 
the same shape. 

By replacing the SPE with a reflective mirror in the setup of fig. 19c and 
adjusting the internal aperture, the laser operated with the fundamental TEMQO 

mode, where the output power was 0.9 W. This is significantly lower than the 
1.2 W obtained when the laser operated with the TEMo,+i helical mode. 

3.5. Self-imaging and Fourier resonators 

It is also possible to discriminate and select a single high-order mode by resorting 
to specialized resonator configurations. In this subsection we describe two types 
of resonators: resonator designs based on the Fourier transformation, and self-
imaging resonators based on the Talbot effect (see Talbot [1936]). Generally, 
in Fourier resonators a single spatial filter is not sufficient to select a high-
order mode, so two different spatial filters are used. Self-imaging resonators 
exploit the Talbot effect, where periodic structures, such as high-order modes, 
are reproduced after propagating certain distances (namely Talbot lengths). 

Kermene, Saviot, Vampouille, Colombeau, Froehly and Dohnalik [1992] 
presented a Fourier resonator with two binary amplitude spatial filters, each 
placed next to a laser mirror. In this resonator, an intra-cavity focusing lens 
performed the Fourier transformation between the two planes where the laser 
mirrors were placed. The spatial filter next to the output coupler had a similar 
pattern to that of the desired output beam, whereas the spatial filter next to the 
back mirror was designed to produce the desired output beam with a uniform 
phase. Specifically, this back filter was designed to have high absorption in 
regions where the Fourier transformation of the desired intensity distribution 
has low intensity. For example, for a desired square intensity distribution, a 
square spatial filter was placed next to the output coupler and a spatial filter with 
absorbing lines along the zeros of a two-dimensional sine function (which is the 
Fourier transformation of a square) was placed next to the back mirror. A similar 
design, for obtaining a uniform-phase circular intensity distribution at the 
laser output, was demonstrated by Saviot, Mottay, Vampouille and Colombeau 
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Fig. 25. Near- and far-field intensity distributions emerging fi-om a slab waveguide CO2 laser, 
operating with the 12th-order mode, with an intra-cavity wire grid. (From Morley, Yelden, Baker 

and Hall [1995].) 

[1993]. Here the spatial filter next to the output coupler was simply a circular 
aperture, whereas the spatial filter next to the back mirror had concentric rings, 
corresponding to the zeros of the Airy pattern. Experimental results with a pulsed 
Nd:YAG laser, operating with such square and circular intensity distributions 
with output energies of 200 mJ, were obtained. Bourliaguet, Mugnier, Kermene, 
Barthelemy and Froehly [1999] showed that the performance of a pulsed optical 
parametric oscillator (OPO) could be improved by intra-cavity spatial filtering. 
Specifically, a five-fold increase of brightness with respect to the multimode 
operation was demonstrated when applying an intracavity two-dimensional wire 
grid designed to form a few lobes in the far field. Le Gall and Bourdet [1994] also 
investigated a Fourier resonator configuration in which an internal spatial filter 
coupled the phases of an array of CO2 waveguide lasers. Fourier resonators were 
also investigated by Wolff, Messerschmidt and Fouckhardt [1999] for selecting 
high-order modes in broad area lasers. 

Abramski, Baker, Colley and Hall [1992] exploited a one-dimensional wire 
grid in a slab waveguide CO2 laser in order to select a single high-order mode. 
The wire grid spacing d was designed to match the periodicity of the desired 
mode. In principle, this by itself could lead to high modal discrimination, 
but in practice the alignment tolerances cannot be met, so excessive losses 
are introduced. The losses can be significantly reduced by resorting to a 
resonator with intra-cavity coherent self-imaging, based on the Talbot effect. 
Specifically, the resonator length L was chosen to match the Talbot length, 
namely, L = \p(flX, where ;? is a small integer that corresponds to the number of 
imaging planes in a round-trip. Such a self-imaging Talbot effect is particularly 
advantageous in a waveguide laser where the boundaries reflect the light, leading 
to a "kaleidoscope" effect, in which a much larger periodic structure is more 
efficiently self-imaged. The modal properties of such a slab waveguide CO2 laser 
were experimentally investigated by Morley, Yelden, Baker and Hall [1995], and 
their results are presented in fig. 25. It shows the near- and far-field intensity 
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distributions cross-sections, when the laser operated with the 12th-order mode. 
As evident, the 12 lobes in the near-field pattern transformed into two main 
lobes (of opposite phase) in the far field, indicating that the laser operates with 
a single mode. The wires were 75 |Jim thick, and output powers of up to 65 W 
were obtained with the single high-order mode, compared to 90 W power for the 
multimode operation, in a resonator length of 25.4 cm. 

Self-imaging resonators based on the Talbot effect were also applied for mode 
selection in waveguide lasers (Baneiji, Davies and Jenkins [1997]), to coherently 
lock arrays of diode lasers (e.g., Jansen, Yang, Ou, Botez, Wilcox and Mawst 
[1989]), and for phase matching the modes in waveguide CO2 lasers with intra-
cavity binary phase elements (Glova, Elkin, Lysikov and Napartovich [1996]). 
Similarly, Tang, Xin and Ochkin [1998] replaced the back mirror in a CO2 laser 
with a reflective binary phase element to obtain high-output powers. In these 
cases, either in-phase or anti-phase operation resulted in either one high central 
lobe or two main lobes in the far field. 

3.6. Polarization-selective resonators 

The light emerging ft-om most resonators is either linearly polarized or unpolar-
ized. Linear-polarization operation is typically obtained by either inserting into 
the resonator a Brewster window or other polarization selective elements (such as 
birefringent crystals, polarizers or polarizing beam splitters), or by a polarization-
sensitive pumping system (such as RF-excited slab lasers). Unpolarized light 
is simply obtained where there are no polarization-sensitive elements in the 
resonator. Also, circularly polarized light can be obtained by inserting a quarter-
wave (A/4) plate into the resonator (see for example Trobs, Balmer and Graf 
[2000]). In all the above, the light polarization is uniform across the entire laser 
output beam. In this subsection, we present laser resonator configurations in 
which the polarization in different parts of the output beam can be varied, namely 
a laser output beam with space-variant polarization. 

Space-variant polarization, such as azimuthal and radial polarizations, results 
in completely symmetric laser beams that can be exploited in various applica­
tions. Such polarizations have been obtained, outside the laser resonator, either 
by transmitting a linearly polarized laser beam through a twisted nematic liquid 
crystal (Stadler and Schadt [1996]) or by combining two linearly polarized laser 
output beams interferometrically (Tidwell, Kim and Kimura [1993]). 

Azimuthal and radial polarizations have also been obtained by inserting 
polarization-selective elements into the laser resonator. Pohl [1972] inserted a 
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Fig. 26. Resonator configuration for selecting an azimuthally polarized mode. (From Pohl [1972].) 

birefringent calcite crystal, in which the principal axis was along the z-axis 
(z cut), into a pulsed ruby laser in order to discriminate between azimuthal and 
radial polarizations. The resonator configuration is shown in fig. 26. The calcite 
crystal was inserted inside a two-lens telescope arrangement, so as to increase 
the divergence of the mode inside the crystal and thereby also the polarization 
discrimination. Specifically, due to different angles of refraction, the diameter of 
the azimuthally polarized mode differed from that of the radially polarized beam; 
so discrimination and selection of an azimuthally polarized mode were obtained 
by inserting an aperture and a stop with the appropriate diameters. Wynne [1974] 
generalized this method and showed experimentally, with a wavelength-tunable 
dye laser, that it is possible to select either the azimuthally or the radially 
polarized mode. This was achieved by controlling the telescope length and 
location, so in a certain range of telescope lengths and locations, the azimuthally 
polarized mode is stable whereas the radially polarized mode is unstable or vice 
versa. 

Mushiake, Matsumura and Nakajima [1972] used a conical intra-cavity 
element to select a radially polarized mode. The conical element introduced 
low reflection losses to the radially polarized mode but high reflection losses to 
the azimuthally polarized mode. This method is somewhat similar to applying 
a Brewster window for obtaining a linear polarization. Similarly, Tovar [1998] 
suggested using complex Brewster-like windows, of either conical or helical 
shape, to select radially or azimuthally polarized modes. 

Nesterov, Niziev and Yakunin [1999] replaced one of the mirrors of a high-
power CO2 laser by a sub-wavelength diffractive element. This element consisted 
of either concentric circles (for selecting azimuthal polarization) or straight 
lines through a central spot (for selecting radial polarization) to obtain different 
reflectivities for the azimuthal and radial polarizations. Experimentally, high 
output power of 1.8 kW was obtained, but the polarization purity was relatively 
low, with mixed transverse mode operation. Liu, Gu and Yang [1999] analyzed a 
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Fig. 27. Coherent superposition of two orthogonally polarized TEMQI modes to form azimuthally 
and radially polarized modes: (a) azimuthally {0) polarized doughnut mode; (b) radially (r) polarized 

doughnut mode. 

resonator configuration, into which two sub-wavelength diffractive elements were 
incorporated, to obtain a different fiindamental mode pattern for two different 
polarizations. 

Oron, Blit, Davidson, Friesem, Bomzon and Hasman [2000] presented a 
method for efficiently obtaining an essentially pure either azimuthally or radially 
polarized beam directly from a laser. It is based on the selection and coherent 
summation of two linearly polarized transverse modes that exist inside the laser 
resonator; specifically, two orthogonally polarized TEMQI modes. The coherent 
summation of TEMoi(.r) and TEMoi(v) Laguerre-Gaussian modes (or TEMio 
and TEMoi Hermite-Gaussian modes), having orthogonally linear polarizations, 
leads to the formation of either an azimuthally or radially polarized mode, whose 
vectorial field distributions have the form 

Azimuthal: £(r, 6) = yEon,)(r, d)-xEoiiy)(r, 6) = 0Eop2exp(-p/2% 

Radial: E(r, 6) = xEo^.^ir, 6) + j^oiCv)(^, 8) = r^op2 exp(-p/2), 

where 0 and r are unit vectors in the azimuthal and radial directions, respectively. 
This coherent summation is illustrated in fig. 27. Figure 27a depicts an 
azimuthally polarized mode, obtained by a coherent summation of a >^-polarized 
TEMoi(x) mode and an x-polarized TEMoi(j;) mode, whereas fig. 27b depicts a 
radially polarized mode, obtained by a coherent summation of an x-polarized 
TEMoi(jc) mode and a >^-polarized TEMoi(v) mode. 

The laser resonator configuration in which specific transverse modes are 
selected and coherently summed is schematically shown in fig. 28. Here, the 
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light propagating inside the laser is split and displaced by means of a birefringent 
beam displacer to obtain two separate paths with orthogonally polarized light. 
A differently oriented discontinuous phase element (DPE) is inserted in each 
path, adjacent to the back mirror, to select the TEMoi mode. Specifically, one of 
these modes is TEMoi(x), and the other is TEMoi(3;). In practice, the two DPEs 
can be fabricated on the same substrate. In order to add the two modes coherently 
with the appropriate phase between them, an additional aligning plate is inserted 
into one of the paths (in the region after separation), so as to control the optical 
path by slightly tilting the window. Note that exact phase locking between the two 
orthogonal modes is obtained by a small coupling between them; the alignment 
plate brings the two modes close enough to allow this locking to occur. At the 
back mirror, two spatially separated TEMoi modes evolve, each with a different 
linear polarization. However, as a result of the coherent summation of these two 
modes, a circularly symmetric doughnut-shaped beam emerges from the output 
coupler. 

This approach was verified experimentally with a continuous-wave lamp-
pumped Nd:YAG laser into which were inserted a calcite crystal as the 
birefringent beam displacer, two DPEs for selecting the orthogonally polarized 
TEMoi modes, and an alignment plate to adjust the phase between the two 
orthogonally polarized TEMQI modes. The calcite crystal was 4 cm long, so the 
two orthogonally polarized light paths were displaced 4 mm apart. The phase 
elements were aligned to obtain two orthogonal TEMQI modes. The alignment 
plate was simply a flat-fused silica window with antireflection layers on both 
faces. To ensure that the beam emerging from the laser is indeed azimuthally or 
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Fig. 29. Experimental intensity distributions of an azimuthally polarized beam that emerges from an 
NdiYAG laser: (a) directly from the laser with no external elements; (b) after passing a horizontal 
A/4 plate and a polarizer oriented at 45 degrees; (c) after passing a polarizer oriented in the horizontal 
direction; (d) after passing a polarizer oriented at 45 degrees; (e) after passing a polarizer oriented 

in the vertical direction. (From Oron, Blit, Davidson, Friesem, Bomzon and Hasman [2000].) 

radially polarized, it was passed through a linear polarizer at 45 degrees. Then, 
the alignment plate was tilted until the intensity distribution after the polarizer 
had two lobes perpendicular (for azimuthally polarized) or parallel (for radially 
polarized) to the polarization direction. This indicated that the orthogonal TEMQI 

modes add coherently. 
Some results for an azimuthally polarized beam are shown in figs. 29 and 30. 

Figure 29 shows the intensity distributions, detected with a CCD camera, that 
emerge fi"om an NdiYAG laser, which emits an azimuthally polarized beam. 
Figure 29a shows the near-field intensity distribution of the azimuthally polarized 
beam, emerging directly fi-om the laser. Here the doughnut shape is evident. In 
order to determine the polarization of the output beam, four additional intensity 
distributions were detected. These are shown in figs. 29b-e. Figure 29b shows the 
intensity distribution of the emerging beam after passing through a quarter wave 
plate, whose main axis was oriented in the horizontal direction, and a polarizer 
oriented at 45 degrees. Here, the nearly doughnut-shaped intensity distribution 
(with approximately half the power) indicates that the polarization of the original 
beam is linear at each point. Figures 29c-e show the intensity distributions 
of the beam emerging fi-om the laser, after passing a single linear polarizer 
oriented at different orientations. Figure 29c shows the intensity distribution with 
the polarizer oriented in the horizontal direction, fig. 29d that in the diagonal 
(45 degrees) direction and fig. 29e in the vertical direction. At these three 
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Fig. 30. Experimental plot of the space variant polarization directions of the emerging (a) azimuthally 
and (b) radially polarized beams. (From Oron, Blit, Davidson, Friesem, Bomzon and Hasman [2000].) 

orientations, the intensity distributions have two lobes, along a line perpendicular 
to the polarization direction, as expected for an azimuthally polarized beam. 

By measuring the intensities at each point of the distributions in figs. 29b-e, 
the Stokes parameters S^-S^ were calculated at each point of the beam, 
from which the polarization ellipse parameters were deduced at each point. 
These results, for the experimental polarization orientations for an azimuthally 
polarized beam, are presented in fig. 30, where the arrows indicate the direction 
of the main axis of the local polarization ellipse (azimuthal angle i/̂ ), calculated 
by arctan(*S'2/*S'i). The deviation from the desired direction of polarization and the 
average ellipticity angle x ^ arcsin(*S'3/*S'o) were also calculated. The calculated 
deviation from the desired polarization orientation was 10 degrees, and the 
average ellipticity angle was found to be 8 degrees. The overall polarization 
purity (percentage of power that is azimuthally polarized) was determined 
to be 95%. As expected with a TEMoi-mode operation that exploits more of 
the laser gain medium than the fijndamental Gaussian mode, the output power 
of our laser with azimuthal polarization was 5.2 W, that is 50% higher than with 
the fiindamental Gaussian mode. Similar results were obtained for a radially 
polarized beam, as shown in fig. 30b. Note that other polarization states can be 
obtained by applying higher-order modes. These include high-order rotational 
polarization by applying TEMQ/ modes where / ^ 2, and azimuthally or radially 
polarized beams having a few concentric rings with TEM^/ modes, where/> ^ 1. 

In a similar resonator configuration, it is possible to simultaneously select two 
different orthogonally polarized transverse modes, in order to more efficiently 
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exploit the gain medium. Oron, Shimshi, BHt, Davidson, Friesem and Hasman 
[2001] investigated laser operation with orthogonally polarized TEMQO and 
TEM02 modes using the configuration shown in fig. 31. The total output power 
with the two modes was 5.7 W, compared to 4.7 W with the single TEM02 mode 
and 3.2 W with the single TEMQO mode; thus, an improvement of the output 
power by approximately 25% over that of a laser operating with the TEM02 mode 
was obtained. Furthermore, since the two modes are orthogonally polarized, each 
could be manipulated separately and then combined to obtain high-output beam 
quality as well. 

3.7. Unstable resonators 

In this subsection, we present various mode-shaping and mode-selection tech­
niques, which are unique to unstable resonator configurations. Several other 
methods involve the use of a graded-reflectivity mirror (GRM). GRMs have a 
continuous, nonuniform reflectivity, where typically the reflectivity is higher in 
the center and lower near the edges of the mirror. Generally, in a laser with a 
GRM output coupler, there is a dip in the center of the near-field pattern, since 
the reflection of the GRM is higher in the center. The analysis of GRM unstable 
resonators could either be based on geometrical optics, which is accurate only 
in a certain range of resonator parameters (see for example Bowers [1992]), or 
be based on diffraction analysis, which is more general (see for example Morin 
[1997]). Other mode-shaping and mode-selection techniques involve either the 
exploitation of intra-cavity apertures with various shapes, or replacing the back 
mirror by a mirror with a phase step. 
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Several methods were suggested for shaping the internal modes to obtain 
a specified laser output profile. Belanger and Pare [1994] replaced the output 
coupler by a GRM in order to obtain a certain output beam profile with lower 
diffraction than with a conventional mirror. The method usually results in some 
decrease in the output power. Massudi and Piche [1997] showed theoretically 
that nearly flat-top output beams could be obtained by inserting an aperture into 
certain negative-branch unstable resonators. In practice however, such output 
beams are difficult to realize, because of the existence of a focal spot in the 
negative-branch resonators. Makki and Leger [2001] controlled the profile of the 
output beam from an unstable resonator by replacing the output coupler with a 
GRM and replacing the back mirror with a reflecting phase element. The phase 
element allowed additional shaping of the intra-cavity mode pattern so as to 
eliminate the dip in the center of the output beam. By proper design of the phase 
element, a nearly flat-top output beam was obtained. 

Piche and Cantin [1991] demonstrated that by introducing a nearly Jt 
phase step in the center of a mirror, one can significantly lower the round-trip 
losses of the unstable resonator. This is attributed to focusing of the laser mode 
near the optical axis, caused by the phase step, so the output coupler reflects 
a larger portion of the beam. Calculations based on the Prony method were 
supported by experimental results with a CO2 laser. Specifically, lasers with a 
phase step can operate with higher magnification than without a phase step. 

Van Eijkelenborg, Lindberg, Thijssen and Woerdman [1998] isolated higher-
order modes by inserting a strip aperture, a square aperture or a circular 
aperture into the unstable laser resonator. The mode selection was performed 
indirectly, by controlling the longitudinal mode of a HeXe laser, operating 
in the infrared (A = 3.51fim). Different high-order modes were obtained for 
each aperture shape, in good agreement with calculated predictions. McDonald, 
Karman, New and Woerdman [2000] calculated the shapes of high-order modes 
in unstable resonators in which differently shaped two-dimensional apertures 
were inserted. They found that the high-order modes have kaleidoscope-like 
patterns. 

3.8. Alternative methods 

In this subsection, we present mode-selection and mode-shaping techniques, 
based on inserting into the resonator either specialized mirrors or specialized 
prisms, or elements that replace the commonly used hard-edged (binary) 
aperture. Rioux, Belanger and Cormier [1977] replaced one of the laser mirrors 



364 Transverse mode shaping and selection [6, § 3 

by a conical (axicon) mirror, to obtain high-order annular modes. In this case, 
either single-mode or multimode operation was obtained, depending on the 
resonator length and intra-cavity aperture diameter. Uehara and Kikuchi [1989] 
exploited an annular back mirror in order to obtain nearly Bessel-Gaussian 
output beams. The experimental intensity distributions were measured in good 
agreement with expected calculated results. 

Abramochkin, Losevsky and Volostnikov [1997] obtained different spiral-type 
output beams from a ring laser resonator in which an intra-cavity prism that 
rotated the internal beam was inserted. The output beams resulted from unusual 
combinations of Laguerre-Gaussian beams, and they generally contained a few 
azimuthal lobes and exhibited rotational symmetry. Zhou, Fu, Lu, Li and Yu 
[1991] replaced the intra-cavity aperture by a capillary tube, and showed both 
theoretically and experimentally, that increased modal discrimination between 
the frindamental and high-order modes is obtained. Ait-Ameur [1993] proposed 
to replace the hard-edged aperture by a super-Gaussian aperture. Calculations 
revealed that with a super-Gaussian aperture of order 5 to 10, both high 
transverse-mode discrimination and low ftindamental-mode losses could be 
obtained. Tovar and Casperson [1998] considered an apodized aperture with 
a specified amplitude transmission, in order to obtain a laser operating with 
hyperbolic sine Gaussian modes. 

3.9. Fabrication of intra-cavity elements 

In general, great care must be taken when fabricating elements that are inserted 
into the laser resonator, because any losses are greatly magnified. This is 
particularly true for mode-selecting and mode-shaping elements, whose light 
efficiency must be very high. Thus, various specialized techniques have been 
developed for fabricating these intra-cavity elements. These involve advanced 
electron beam recording, photolithographic and etching thin film deposition, 
and diamond turning technologies. The fabrication of some representative intra-
cavity elements will be briefly described. 

Binary diffractive or phase elements are generally fabricated with a one-stage 
etching process, using a single binary mask that is generally recorded with 
an electron beam, whose information is transferred to photo-resist layers with 
conventional photolithographic technologies. Continuous diffractive or phase 
elements (such as spiral phase elements) are fabricated with a more complex, 
multistage, etching process (see for example Hasman, Davidson and Friesem 
[1991]). In this fabrication method, a number N^n of binary masks are first 
individually recorded, and their information is transferred to photo-resist layers 
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that are individually etched to form the nearly continuous phase element with 
2̂ "̂  phase levels. Generally, when using such elements outside the resonator 
(for example, for beam shaping), a high efficiency of 98.6% is obtained for an 
element with 16 levels (Â m = 4). For an intra-cavity element one might typically 
need even higher-level resolution due to two main factors. First, an intra-cavity 
element is often placed next to a mirror or replaces it, so light passes through 
it twice in a short distance, requiring twice the level depth resolution. Second, 
losses are magnified inside the laser resonator, so higher efficiencies, and thereby 
lower losses, are required from the element. Thus, a larger number of masks Âm 
may be required. This implies that the multistage process has a basic drawback 
in fabrication complexity. 

Alternatively, a one-stage etching process with a gray-scale mask can be 
exploited. Suleski and O'Shea [1995] recorded such a gray-scale mask on low-
contrast films using visible illuminators and photo-reduction techniques. For 
their final blazed grating, diffraction efficiencies up to 85% were measured. 
Daschner, Stein, Long, Wu and Lee [1996] recorded the gray-scale mask on a 
specially designed high-energy beam sensitive glass, using a computer-controlled 
high-energy electron beam. Borek and Brown [1999] also exploited a one-stage 
etching process, with a gray-scale mask. Such one-stage etching processes lead to 
elements with a desirable continuous depth profile. However, the process requires 
very exact calibration procedures. 

Bourderionnet, Huot, Brignon and Huignard [2000] showed that holographic 
optical elements can also serve as intra-cavity elements. The holographic 
elements were recorded in a thick photo-polymer material, using a computer-
controlled spatial light modulator to control the phase of the signal beam. The 
holographic elements were designed to obtain a super-Gaussian output from 
an Nd:YAG laser {X= 1.06[im). Unfortunately, highest diffraction efficiency of 
the holographic element was only 95%, which resulted in a laser output power 
approximately 40%) lower than that from a laser with no holographic elements. 

Thin-film technology could also be used to form a binary phase element (see 
for example Kol'chenko, Nikitenko and Troitskii [1980] or Piche and Cantin 
[1991]). Here, instead of etching into the substrate, a relatively thick layer is 
deposited on the substrate through a mask with the desired shape, which results 
in a binary phase element. Some elements are fabricated with a diamond-turning 
technique. This technique is generally exploited for forming aspherical mirrors or 
phase elements, such as conical elements of GPMs (see for example Van Neste, 
Pare, Lachance and Belanger [1994]), where there is a circular symmetry. Due 
to the relatively low attainable resolution, this method is mostly used for longer 
wavelengths, namely, CO2 lasers. 
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Cherezova, Chesnokov, Kaptsov and Kudryashov [1998a,b] showed that it is 
possible to replace the fixed back mirror of a laser resonator with an adaptive 
mirror. An adaptive mirror fabricated with three electrodes can control piezo­
ceramic actuators to form a radially symmetric phase pattern. The shape of the 
adaptive mirror can be electrically controlled both to obtain a predetermined 
shape and to correct possible aberrations in the resonator. A schematic diagram 
of the adaptive mirror is shown in fig. 32. This mirror was applied as a GPM 
in order to select super-Gaussian output beams of various orders or a doughnut-
shaped output beam. 

Finally, most if not all intra-cavity elements require high-quality reflective or 
antireflective coatings in order to minimize losses. Also, high surface quality 
(low roughness) is required to reduce scattering losses, and high parallelism is 
required fi'om transmittive elements in order to maintain the optical path after 
insertion. 

§ 4. Properties of the laser output beams 

In this section, we consider certain properties of the laser output beams. These 
include beam quality, output power and field distributions. Several specific laser 
output beams are presented. 
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4.1. Beam quality 

There are various criteria for evaluating the quality of laser output beams. Such 
criteria are not universal, but depend on the specific application. The most 
widely used criteria for beam quality are based on focusability, or a product 
of beam width and beam divergence. However, there are different definitions 
of width and divergence. Other criteria are based on phase space analysis, on 
coherence, or on thermodynamic limits (entropy). Here, several beam quality 
criteria are considered. 

4.1.1. Second-order moments (M^) 
The quality of the beam emerging from a laser is most commonly defined by 
its focusability, determined by the product of beam waist and beam divergence. 
The measure for the beam quality is the second-order moment beam propagation 
factor introduced by Siegman [1990], namely, the M^ value, given by the ratio 
between the space-bandwidth products of the beam and that of a Gaussian beam, 
as 

M^ = ^1 , (12) 
^Gaussian "Gaussian 

where w = ({w^))2 and 6 = ({6^))2. Consequently, the optimal beam has a 
Gaussian shape, with a minimal waist-divergence product, which is limited only 
by diffraction. Such an optimal beam, with M^ = l, can be obtained from a 
laser operating with a single fimdamental TEMQO mode. Modifications of the 
beam-quality criteria are based on different definitions of w and 6, namely, the 
angle or waist in which a certain percentage of the energy is contained. These 
criteria agree with the M^ value for Gaussian beams. However, for other types 
of beams, such as high-order modes or nearly flat-top beams, the criteria may 
deviate significantly. 

For any beam, the M^ value is left unchanged by propagation of the beam or 
by simple optical elements such as spherical mirrors and lenses, a combination 
of those, or any optical system that can be represented by an ABCD matrix 
(see Yariv [1991] for details). Moreover, Siegman [1993] showed that binary (jt) 
phase plates cannot improve the M^ value. Later, Zhao [1999] also showed that 
other step-phase plates cannot improve the M^ value. Also, aberrations in an 
optical system may be related to the deterioration of the M^ value for a beam 
passing through it. 

M^ values for various types of beams have been calculated (see for example 
Siegman [1990] or Saghafi and Sheppard [1998]). Specifically, for a beam 
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derived from a laser operating with the Hermite-Gaussian modes, the M^ value 
is given by 1 +«+ m, while a beam derived from a laser operating with the 
Laguerre-Gaussian modes has \+2p+\l\. For a multimode laser, the M^ value 
is mostly determined by that of the highest-order mode, although the total 
number of modes, Nj = }^M'^{M'^+ \), could be very large. So, the mode 
content of a laser cannot generally be determined from the M^ value. Another 
disadvantage of this criterion is that certain types of beams that are desired for 
various applications, such as a flat-top beam, have very high M^ values. 

For beams whose field distribution cross-section differs between the x and 
y axes, it is useful to define a more general value, namely M^=Ml-Ml. A similar 
definition could be applied for radially symmetric beams. M^ values have 
been calculated for beams derived from lasers operating with the Hermite-
Gaussian and the Laguerre-Gaussian modes, yielding M'^ = (l +2m)(l +2«) and 
M 4 = (1 +2jr7+ | / | )2-/2, respectively (see Murphy [1999]). 

4.1.2. Wigner distribution function (WDF) 

The Wigner distribution frinction (WDF) was introduced by Wigner [1932] and 
has been applied in many branches of physics and optics (see Dragoman [1997]). 
One of these applications relates to beam quality. The WDF of a beam is given 
by 

1 W{r, p) = X~' / d'Ar exp(-2;ripAr/A) \l){r + ^Ar) \l)\r - ^Ar), (13) 

where r = (jc,j;) is the spatial coordinate,/? = (/?;c,;?,v) is the frequency coordinate, 
and \l) denotes the field distribution. 

Gase [1995] provided a WDF representation of Laguerre-Gaussian modes. 
Simon and Agarwal [2000] simplified this representation, and obtained simple 
relations between the WDF of Laguerre-Gaussian modes and the WDF of 
Hermite-Gaussian modes. The WDF of Laguerre-Gaussian modes is 

^^,/(r,p) = (2/A)(-l)2^^l'lL^,|/|(4[eo ± Q2\)\{mo T e2])exp(-4eo), 
(14) 

where go = \{r'^lw^ + 7i^\\?-p^l}}\ Q2 = JtX~\xpy -ypx), and Lp are the Laguerre 
polynomials of order p. For the TEMQO ftmdamental mode, a four-dimensional 
Gaussian is obtained. For all other modes, a more complicated fiinction, but with 
a larger Gaussian envelope, is obtained. 

A method to establish the WDF of a beam experimentally was suggested by 
Hodgson, Haase, Kostka and Weber [1992]. Various beam-quality parameters 
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can be obtained from the WDF. Specifically, either the M^ or the M^ values can 
be derived from the second-order moments of the WDF (see Dragoman [1997]), 
which corresponds to the fr)ur-dimensional volume surrounded by the envelope 
of the WDF (or to the phase-space area, given by Murphy [1999]). Also, the 
total coherence function K was derived by Eppich, Johansson, Laabs and Weber 
[2000], as 

K = X f W(r,pfdrdp = XTr(mV% (15) 

which is maximal for a coherent (or a single-mode) beam. 
The total coherence function of eq. (15) is inversely proportional to the 

actual (net) volume of the WDF. This volume may be only a part of the 
envelope volume. For lasers operating with the fundamental Gaussian mode or 
multimodes, the actual and envelope volumes coincide, whereby the envelope is 
completely frill. Moreover, for lasers operating with any single high-order mode, 
the total coherence frinction K is unity, just as for a laser operating with the 
fundamental Gaussian mode. This implies that the actual volume of the WDF 
is minimal. For lasers operating with a few modes (each of equal power), the 
actual volume of the WDF is the number of modes. 

4.1.3. Coherence and entropy 
Wolf and Agarwal [1984] exploited coherence theory (see for example Born and 
Wolf [1965]) to show that if there is no degeneracy, each mode is completely 
spatially coherent. Moreover, complete spatial coherence can occur only in a laser 
operating with a single mode (or in some combinations of degenerate modes) and 
cannot occur in a multimode laser. Visser, Friberg and Wolf [2001] introduced 
the phase-space product, which can be exploited to obtain a measure of the 
beam quality for partially coherent beams. This product expresses the effective 
coherence area of the source multiplied by the effective angular spread of the 
beam, and coincides with the M^ value for fully coherent beams. A minimal 
value of unity was obtained for a class of laser beams, which also included the 
lowest-order Gaussian mode. 

Another approach, which differentiates between single-mode and multimode 
laser operation, was introduced by Graf and Balmer [1996]. The analysis of the 
beam quality is based on the second law of thermodynamics, namely, on entropy. 
In order to study the limits of beam shaping, the entropy of a laser operating with 
various transverse modes was calculated to yield 

*S'l ^ ^ ^ln(«mode) for Wmode > 1, (16) 
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Fig. 33. Calculation of entropy, MDF and ln(A/^), for a superposition of the two lowest-order modes, 
as a function of the portion of the lowest-order mode CQ. The entropy was calculated for a total 

number of 100 photons. (From Graf and Balmer [1996].) 

where «mode is the number of photons in the resonator mode. For a constant 
number of photons «tot = X]mode«mode, the maximal entropy is obtained when 
the photons are equally distributed among all the modes, whereas the minimal 
entropy is obtained when the laser operates with a single mode. Moreover, 
the second law of thermodynamics (dS ^ 0) implies that photons can only 
be transferred from mode 1 to mode 2 if «i >«2, so a transformation from 
multimode operation to single-mode operation is not possible. Also, the entropy 
of a single high-order mode is equal to that of a single Gaussian mode. Thus, it 
is possible thermodynamically to transform a high-order mode into a Gaussian 
beam without losses. 

The entropy in eq. (16) depends on the total number of photons. Similarly, it 
is possible to define the mode distribution frmction (MDF) that does not depend 
on the number of photons. This MDF was referred to as the information entropy 
by Bastiaans [1986], namely 

^ ^ ^ / ^ ^mode ^^ ^mode? ^mode 

mode 

^mode 

«tot 
(17) 

The entropy and MDF were compared to the M^ value for a laser operating with 
the two lowest-order modes. The results, as a function of the relative number of 
photons in each mode, are presented in fig. 33. Here, both the entropy and the 
MDF reach a maximum (poorest beam quality) when the photons are equally 
divided between the two modes, namely e{) = e\ = \, whereas the M^ value 
decreases monotonically with EQ. Thermodynamically, it is possible to reduce 
the M^ value from that shown by point 1 to that shown by point 2 since the 
entropy of these two states is the same. 
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It should be noted that the coherence properties, the MDF and the entropy 
depend significantly on the modal structure of the beam. This modal structure 
can be evaluated from intensity distribution cross-section measurements (see 
for example Cutolo, Isernia, Izzo, Pierri and Zeni [1995] or Santarsiero, Gori, 
Borghi and Guattari [1999]) or coherence measurements (Warnky, Anderson and 
Klein [2000]). Thus, the MDF and entropy can be measured experimentally. 
Also, the entropy is related to the possible brightness improvement of a 
beam. The brightness is inversely proportional to the M^ value, thus, a 
brightness improvement is concomitantly obtained with the reduction of the 
M^ value. Note that there are two possible orthogonal polarization states, and 
the above discussion is valid for each of them. 

4.2. Intensity and phase distributions 

In this subsection, we consider the field distributions of beams that emerge 
from laser resonators. Properties of such field distributions along with methods 
to distinguish between them are presented. Moreover, methods to improve the 
focusability of beams having specified field distributions are demonstrated both 
theoretically and experimentally. 

4.2.1. Uniform phase distribution 

Beams with a uniform phase distribution can be shaped or transformed using 
various techniques (see for example Bryngdahl [1974] and Davidson, Friesem 
and Hasman [1992]). The most widespread laser output beam with uniform 
phase is the Gaussian beam, in which the transverse intensity distribution is 
maintained while propagating, leading to simple propagation properties. Such 
Gaussian beams can be readily obtained fi:om lasers operating with only the 
ftindamental TEMQO mode. For other beams with uniform phase, the transverse 
intensity distribution is changed during propagation, and their M^ value is greater 
than unity. Their propagation properties depend on their intensity distributions in 
the near field. For example, the propagation properties of super-Gaussian beams, 
which can be obtained from laser resonators with intra-cavity diffractive elements 
or GPMs, were analyzed by Parent, Morin and Lavigne [1992]. 

4.2.2. Binary phase distribution 

Beams emerging from a laser operating with a high-order Hermite-Gaussian 
mode or a high-order degenerate (non-helical) Laguerre-Gaussian mode have 
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binary phase distributions, which consist of lobes and rings, where neighboring 
lobes or rings have opposite phases {n phase shift). Casperson [1976] compen­
sated for the phase differences between neighboring lobes or rings, by letting the 
output beam pass through a binary phase element with Jt phase shifts in proper 
locations. This increased the peak intensity and power in the main lobe of the far-
field intensity distribution, implying a better beam quality. Yet, Siegman [1993] 
calculated that the beam quality, in terms of M^ is not improved but remains 
the same. Indeed, he concluded that binary phase plates cannot improve the 
M^ value. The contradiction between the two approaches results from different 
criteria for beam quality. The beam quality in accordance to percentage of power 
in the main lobe criterion is hardly affected by low-power side-lobes, whereas 
in accordance to the M^ criterion the side-lobes contribute significantly to the 
improvement in the M^ value. 

Optimized binary phase-compensating elements were tested experimentally by 
Casperson [1977] and Casperson, Kincheloe and Stafsudd [1977] with HeNe 
and CO2 lasers, yielding improvement in the peak power and percentage of 
power in the main lobe, in agreement with predictions. Lescroart and Bourdet 
[1995] analyzed binary phase-compensating elements for improving the far-field 
characteristics of an array of waveguide lasers and determined the trade-off 
between a main lobe with high peak but with side-lobes to that of main lobes of 
lower power concomitant with very low side-lobes. Lapucci and Ciofini [1999] 
optimized the design of a binary phase-compensating element for narrow annular 
laser sources. Note that, in a laser configuration in which a DPE is inserted next 
to the output coupler, as shown in fig. 12 (see sect. 3.3), there is no need for a 
phase-compensating element, since the mode-selecting DPE acts also as a phase-
compensating element. 

Baker, Hall, Hornby, Morley, Taghizadeh and Yelden [1996] showed that by 
introducing a binary phase-compensating element, the beam emerging from a 
waveguide laser operating with a high-order antisymmetric mode is transformed 
so that the far-field distribution consists of a high-intensity main lobe and low-
intensity side-lobes. Moreover, by resorting to spatial filtering in the far-field, the 
side-lobes were eliminated, thereby significantly improving the M^ value with a 
relatively small decrease in power. Specifically, an original beam with M J =21.7 
was transformed into a beam with M^ close to unity with an efficiency of 59%. 

4.23. Helical phase distribution 

In general, the intensity distribution of a helical laser beam is the same as that of 
a doughnut-shaped laser beam, but their field distributions are distinctly different. 
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Fig. 34. Experimental interference fringe patterns: (a) Gaussian beam; (b) lowest-order helical beam; 
(c) lowest-order helical beam of opposite helicity. (From Harris, Hill, Tapster and Vaughan [1994].) 

Specifically, the doughnut-shaped laser beams are composed of an incoherent 
superposition of two TEMQ/ modes. For example, when the two field distributions 
of the TEMoi(x) and TEMQ 1(3;) modes in eq. (6) are added incoherently, they form 
a hybrid mode whose intensity distribution is doughnut-shaped. On the other 
hand, when they are added coherently with the appropriate phase, they form a 
pure helical mode. 

Several techniques were developed to distinguish between helical and dough­
nut beams, and between helical beams of opposite helicity. In one technique, the 
determination whether a beam is helical, having a phase of exp(i0), is done by 
examining the interference of the beam with its mirror image or with a reference 
beam (see Indebetouw [1993], Harris, Hill and Vaughan [1994], or Harris, Hill, 
Tapster and Vaughan [1994]). Examples of such interference patterns are shown 
in fig. 34. As evident, the helicity can be easily obtained from the fringe pattern. 

Alternatively, one can let the emerging beam pass through another SPE. An 
SPE having a phase of exp(-i/0) will focus the helical beam to obtain a main 
lobe with a high central peak intensity, whereas one having a phase of exp(+i/0) 
will diverge it fiirther away from the center. This property is unique to the helical 
beams formed by the TEMo,+/ modes. For the beams formed by the hybrid mode, 
either one of these two SPEs will focus the hybrid beam to a main lobe with 
a high central peak intensity, since all parts of the beam are approximately in 
phase. Experimental results for the helical beams formed by the TEMo,+i mode 
are shown in fig. 35, along with those predicted for hybrid and helical beams. 
Figure 35a shows the cross-sections of the far-field intensity distributions with 
the first phase-correcting SPE having a phase of exp(-i0). As evident, there 
is a main lobe with a high central peak intensity and very low side-lobes, in 
agreement with those predicted for a helical beam, while the incoherent hybrid 
beam has more power spreading. Figure 35b shows the corresponding far-field 
cross-sections of the intensity distributions with the second SPE of exp(i0). Here 
the energy spreads out from the center to form an annular shape, as expected for a 
helical beam. However, for a hybrid beam, no spreading should occur, and there 
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Fig. 35. Experimental and calculated far-field intensity distribution cross sections with an additional 
transmittive SPE: (a) SPE of exp(-i0); (b) SPE of exp(+i0) (dashed lines, experimental results; sohd 
lines, calculated results for the coherent-helical; dotted lines, calculated results for the incoherent-

hybrid). (From Oron, Davidson, Friesem and Hasman [2000b].) 

Still is one main central lobe. These results clearly indicate that the emerging 
beam is indeed helical. 

An interesting property of helical beams is that their M^ value can be 
significantly improved. Oron, Davidson, Friesem and Hasman [2000a] showed 
that continuous-spiral phase elements can improve the M^ value of helical 
beams. Specifically, a single high-order helical beam was transformed into a 
nearly Gaussian beam. An arrangement for transforming the helical output beam 
into a nearly Gaussian beam is shown schematically in fig. 36. A helical TEMo,+/ 
beam, with a field distribution given by eq. (1), emerges from the laser in which 
a reflective SPE is inserted. The beam is collimated by a cylindrical lens, and its 
M^ value is 1 + /. In the optical mode converter, the collimated beam first passes 
through a transmissive SPE, which introduces a phase of exp(-i/0), thereby 
modifying the helical-phase distribution into a uniform distribution yielding 
£opl'l''L]/'(p)exp(-p/2). 

Laser resonator Optical mode converter 

(Back mirror) 

Transmissive 
SPE U 

- ^ u — > \ 

Spatial filter 

Fig. 36. Basic configuration of a laser resonator that yields a high-order helical mode and an optical 
mode converter that yields a nearly Gaussian mode. (From Oron, Davidson, Friesem and Hasman 

[2000a].) 
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Table 1 
Initial and final M^ values and transformation efficiency r/, for a laser operating with either the 

fiindamental mode or high-order helical modes 

Mode Initial M^ Final M^ Transformation efficiency r] 

TEMoo 

TEMo, + i 

TEMo, + 2 

TEMo, + 3 

TEM0. + 4 

1 

2 

3 

4 

5 

1 

1.036 

1.06 

1.07 

1.07 

100% 

94% 

87% 

80% 

74% 

Analysis based on Fourier transformation of the near field and the second-
order moments reveal that the phase modification with the external SPE reduces 
the M^ value significantly, fi-om 1+/ to (1+/)^^^. This result is in contrast 
with that obtained for a laser operating with degenerate modes, where a 
correcting binary-phase plate can improve the peak power of the far-field 
intensity distribution, but not the M^ value. Moreover, the phase modification 
significantly changes the far-field intensity distribution, yielding a high central 
lobe and low ring-shaped side-lobes that contain only a small portion of the 
total power (e.g., 6% for a laser operating with the TEMo,±i modes). Thus, 
by exploiting a simple spatial filter (e.g., a circular aperture), it is possible to 
obtain a further significant improvement in the M^ value. Specifically, a nearly 
Gaussian beam, withM^ near 1 (theoretically 1.036 for the TEMo,+i mode), with 
only a small decrease in output power is obtained. Table 1 shows the calculated 
initial and final (after spatial filtering) M^ values, as well as the transformation 
efficiency ry, denoting the percentage of power in the main lobe, for a laser 
operating with either the fundamental mode or in high-order helical modes. Note 
that the transformation efficiency decreases as the order of the mode increases. 

The configuration shown in fig. 36 was tested with a linearly polarized 
CO2 laser in which a reflective SPE replaced the usual back mirror. The SPE 
was designed to ensure that the laser operated with the helical TEMo,+i mode, 
as described in sect. 3.4. The optical mode converter contained a transmissive 
SPE formed on zinc selenide substrate, a telescope configuration of two lenses -
the first ( / i =50 cm) placed 50 cm from the SPE and the second (/2 = 25cm) 
75 cm from the first - and a spatial filter in the form of a circular aperture. 

The intensity distributions were detected at the spatial filter plane and 
the output plane with a pyroelectric camera. The results are presented in 
figs. 37 and 38. Figure 37 shows the detected intensity distributions, along 
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Fig. 37. Detected intensity distributions and experimental and calculated intensity cross sections at 
the spatial-filter plane: (a) without SPEs; and (b) with a transmissive SPE. (Solid lines, calculated; 

dashed lines, experimental). (From Oron, Davidson, Friesem and Hasman [2000a].) 

with calculated and experimental intensity cross-sections at the spatial filter 
plane. Figure 37a shows the intensity distribution and cross-sections without 
the transmissive SPE. Thus, the usual nearly doughnut-shaped distribution of 
a helical beam whose phase was not compensated by the transmissive SPE is 
obtained. Figure 37b shows the intensity distribution and cross-sections when the 
transmissive SPE was inserted. As is evident, there is a high central peak with 
low side-lobes that are removed by spatial filtering, yielding a nearly Gaussian 
beam. Moreover, the detected intensity distribution is narrower than that obtained 
with no SPE, indicating the improvement of M^. 

Figure 38 shows photographs of the detected intensity distributions along 
with calculated and experimental intensity cross-sections at the output of the 
optical mode converter. Here, the calculated results were obtained by Fourier 
transformation of the field distribution in the spatial filter plane. Figure 38a 
shows the intensity distribution and cross-sections at the output plane, when the 
mode converter includes the SPE but no spatial filter. This is simply an image 
of the doughnut-shaped helical beam from the laser, whose intensity distribution 
results from a TEMo,+i mode. The SPE in this case does not affect the intensity 
distribution at the output plane but only its phase. Figure 38b shows the detected 
intensity distribution and cross-sections at the output plane with both the SPE 
and the spatial filter in the mode converter. As predicted, the intensity distribution 
has a Gaussian shape. In this case the efficiency r] was 85%, which is somewhat 
lower than the calculated limit of 94%. The M^ value of this beam was measured 
to be better than 1.1, as expected. 
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Fig. 38. Detected intensity distributions and calculated and experimental intensity cross sections at 
the output of the optical mode converter: (a) without a spatial filter; and (b) with a spatial filter 
(solid lines, calculated; dashed lines, experimental). (From Oron, Davidson, Friesem and Hasman 

[2000a].) 

4.2.4. Several transverse modes 

When the laser operates with multiple modes, i.e., fundamental and higher order 
modes, the emerging beam quality is relatively poor and is mainly determined 
by the highest-order mode. In such lasers the phase distribution of the output 
beam is random, and little, if anything, can be done to improve the quality of the 
beam. When the laser operates with a single high-order mode, the emerging beam 
quality is still inferior to that from a laser operating with the fundamental mode, 
because the intensity distribution and the divergence of the beam are relatively 
large. Yet, a beam which originates from a laser operating with a single high-
order mode has well-defined amplitude and phase distributions, so in accordance 
to entropy, it is allowed thermodynamically to efficiently transform it into a 
nearly Gaussian beam (see sect. 4.1.3). 

A laser may also operate with only a few modes, where most of the modes 
between the fundamental and the highest-order modes are not present. Here again 
the phase distribution is undefined at any point of the beam emerging from the 
laser. Yet, Oron, Davidson, Friesem and Hasman [2001] demonstrated that beam 
quality could be improved in a laser operating with a limited number of modes N, 
much smaller than A/̂ T, namely. 

N <^NT = \[M^{M^ + 1)] ^ |max(l +2;?+ |/ |)l (18) 

In accordance with the total coherence parameter K of eq. (15), the beam 
quality depends only on the number of modes and their relative powers. Thus, 
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according to the Wigner algebra, it is possible to reduce the WDF envelope 
volume of a beam from a laser operating with few modes, where the condition in 
eq. (18) is valid, towards that of the actual volume, thereby allowing the desired 
transformation that will improve the quality of the laser output beam. Such an 
improvement will be illustrated for a laser operating with only two incoherent 
transverse modes TEMi ±1, whose M^ value is 4. For comparison, the number 
of modes in a multimode laser with the same M^ would be 10 (see eq. 18). 

An Nd: YAG laser in which an annular DPE, consisting of a single disconti­
nuity ring with a specified radius was inserted into the resonator, as shown in 
fig. 12, to simultaneously select both helical TEMi, ±1 modes. These two selected 
modes have the same radial dependence, but a different azimuthal dependence; 
thus, even an incoherent combination of these modes can be manipulated 
together in the radial direction. The optical beam converter contained a telescope 
configuration of two lenses with a spatial filter in the form of a circular aperture. 
The intensity distributions next to the output coupler, at the spatial filter plane 
and at the output plane, were detected with a CCD camera. 

Since the DPE is placed next to the output coupler, the emerging field 
distribution does not have the usual n phase shift between the two rings, so the 
far-field intensity distribution will be significantly affected. It now has a central 
ring, which contains most of the output power, and ring-shaped side-lobes that 
contain only a small portion of the power (e.g., 20.4% for a laser operating with 
the TEMi, ±1 modes). Thus, by exploiting the additional converter with a simple 
spatial filter (e.g., a circular aperture), it was possible to obtain a significant 
improvement in the M^ value. Specifically, a nearly doughnut-shaped beam, 
having M^ near 2 (theoretically 2.04 for the TEMi ±1 modes), was obtained with 
a relatively small decrease (20.4%) in output power. Such a reduction in M^ leads 
to a significant increase in the brightness of the beam, proportional to PIM^, 
where P is the power, leading to an improvement by a factor of 2.9. 

The WDF of the TEMi,+i mode has been calculated, and some representative 
results are shown in fig. 39. Since the Wigner distribution is four-dimensional, 
only a subspace which includes the origin and where r is parallel to p is 
presented. Figure 39a shows the WDF of a TEMi,+i mode, which consists of a 
central negative distribution, indicating a central phase singularity (vortex), and 
surrounding concentric rings. Figure 39b shows the WDF after passing through 
a DPE which eliminates the n phase shift between the two rings in the field 
distribution of the TEMi,±i mode. As evident, the shapes of the rings are not 
whole, leading to a high (and larger) central negative distribution, and more 
spread-out side-lobes. This is the first stage in contracting the WDF. Figure 39c 
shows the far-field WDF, which is obtained after Fourier transformation. This 
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(a) (b) 

(c) (d) 

Fig. 39. Wigner distribution function of helical TEMi+i mode at various locations: (a) WDF of 
original TEMi+i mode; (b) WDF of TEMi+i mode after passing an annular DPE; (c) far-field 
WDF of TEMi +1 mode after passing an annular DPE; (d) WDF of TEMi +1 mode after passing 
an annular DPE and spatial filtering. All distributions are identical to those of the TEMi _i mode 
and to an incoherent summation of the two modes. (From Oron, Davidson, Friesem and Hasman 

[2001].) 

Fourier transformation practically rotates the WDF by 90 degrees, to exchange 
the r and/; axes. The last stage consists of spatial filtering, which cleans the WDF 
from most of the side-lobes, yielding a WDF similar to that of a TEMo,+i mode, 
still with a central negative distribution, but only a single outer ring. This WDF 
is shown in fig. 39d. Since the two modes TEMi,+i and TEMi,_i have similar 
radial dependence (though different azimuthal dependence), the above subspace 
of the WDF is the same for both modes, so figs. 39a-d actually show the WDF 
of either one of the two TEMi ±i modes or of an incoherent superposition of 
the two (since the WDF of an incoherent summation of two modes is the sum of 
the WDFs of these modes). Note that for only one of these modes is it possible 
to further improve the beam quality with an SPE (see sect. 4.2.3). 

The experimental results are presented in figs. 40 and 41. Figure 40 shows the 
detected intensity distributions, along with calculated and experimental intensity 
cross-sections in the near and far fields respectively. Figure 40a shows the 
intensity distribution and cross-sections at the output from the laser. The intensity 
distribution shows the two rings of the TEMi ±i modes. Figure 40b shows 
the corresponding far-field intensity distribution and cross-sections. There is a 
central doughnut-shaped pattern with some low side-lobes, that are later removed 
by the spatial filtering, to obtain a nearly doughnut-shaped beam. 

Figure 41 shows the near- and far-field intensity distributions along with 
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Fig. 40. Detected intensity distributions and calculated and experimental intensity cross sections 
at near and far fields: (a) at the output of the laser; and (b) at the spatial filter plane. (Solid 
lines, calculated; dashed lines, experimental). (From Oron, Davidson, Friesem and Hasman [2001].) 

Fig. 41. Detected intensity distributions and calculated and experimental intensity cross-sections 
at the near and far fields after the optical mode converter: (a) near field; (b) far field. (Solid 
lines, calculated cross sections; dashed lines, experimental cross-sections). (From Oron, Davidson, 

Friesem and Hasman [2001].) 

calculated and experimental intensity cross-sections of the beam at the output 
of the optical beam converter. As predicted, the intensity distribution is 
doughnut-shaped in both the near and far fields. In this case the measured 
efficiency was 76%, in agreement with the calculated limit of 79.6%. The 
M^ value of this beam was nearly 2, as expected, leading to significant brightness 
improvement, in agreement with prediction. 
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The output power was 9.5 W directly from the laser, and 7.2 W after the mode 
converter. For a similar laser, with no phase element, the output power was 
only 5.5 W, obtained by simply opening the aperture to allow TEMo,±i-inode 
operation; however, in this case, the laser operation included the fundamental 
mode, which was not suppressed. Overall, a high-quality doughnut beam was 
obtained, with a significantly higher power than would normally be obtained. 
Note, the transformation efficiency in this case was 79.6%, but it could be 
increased to 100% by resorting to SPEs, rather than DPEs, and selecting high-
order helical modes having different p but the same /, such as TEMQ, +2 and 
TEMi,+2 modes for laser operation. 

4.3. Selected applications 

In this subsection, selected applications that require special laser beam properties 
are briefly described, along with the possible mode-shaping or mode-selecting 
methods. Some applications require that the laser beam have special transverse 
intensity distributions, such as doughnut shape, which are particularly useful 
for trapping particles and atoms. Specifically, Sato, Harada and Waseda [1994] 
exploited doughnut-shaped beams in order to trap small metallic particles. Kuga, 
Torii, Shiokawa, Hirano, Shimizu and Sasada [1997] exploited doughnut-shaped 
Laguerre-Gaussian beams to trap laser-cooled rubidium atoms in the dark 
region of the beams. Doughnut-shaped beams can have additional interaction 
with trapped particles. He, Friese, Heckenberg and Rubinsztein-Dunlop [1995] 
showed that if the trapping beam is helical, the angular momentum from the 
laser beam is transferred to absorptive particles. One can control the angular 
momentum transfer by changing the helicity of the beam. Moreover, a radially 
polarized laser beam can be applied for accelerating electrons (Liu, Cline and 
He [1999]). Doughnut-shaped beams were also used by Charters, Luther-Davies 
and Ladouceur [1999] for directly exposing photosensitive materials to form 
waveguides. They showed that with doughnut-shaped beams the uniformity of 
the waveguide refraction index is better than with conventional beams with 
Gaussian profile. 

Other applications require that the laser beams have special phase distribution 
such as a helical beam with a phase singularity. The properties of such helical 
beams, namely optical vortices, were analyzed by Soskin, Gorshkov, Vasnetsov, 
Malos and Heckenberg [1997], who developed various rules regarding the 
topological charge and angular momentum that characterize the propagation 
of such beams or combinations of such beams, and showed annihilation and 
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(a) (b) 

Fig. 42. Ray-tracing geometry and polarized light orientation for focusing coUimated beams: 
(a) linearly polarized beam; and (b) radially polarized beam. (From Quabis, Dom, Eberler, Glockl 

and Leuchs [2000].) 

appearance of new vortices. Courtial, Robertson, Dholakia, Allen and Padgett 
[1998] studied the rotational frequency shift of light beams, which is proportional 
to the photon angular momentum. Experimental measurements were performed 
with helical Laguerre-Gaussian beams and radially polarized (or other specially 
polarized) beams, in the millimeter wavelength range. 

Still other applications require that the laser beams have special polarization 
properties. Specifically, Marhic and Garmire [1981] exploited azimuthally 
polarized CO2 laser beams for transmission through hollow metallic waveguides. 
The azimuthally polarized beam has a significantly higher reflection, and conse­
quently lower transmission losses through the hollow waveguides. In laser ma­
terial processing applications, the proper choice of polarization can result in de­
sirable lower reflectivity and higher absorption. Niziev and Nesterov [1999] an­
alyzed the influence of beam polarization on laser cutting efficiency, and showed 
that beams with radial polarization are more effective in cutting and drilling than 
linearly polarized beams, whereas azimuthally polarized beams are very poor. 
This is because laser beams with azimuthal polarization are readily reflected 
whereas those with radial polarization are highly absorbed leading to more effi­
cient cutting. Also, Quabis, Dom, Eberler, Glockl and Leuchs [2000] showed that 
radially polarized beams could be focused into smaller spots than linearly polar­
ized beams (or azimuthally polarized beams). This is due to vectorial effects, and 
can be explained with the aid of fig. 42. With the linear polarization in fig. 42a, a 
partial cancellation of the field (destructive interference) between different parts 
of the beam occurs, whereas with the radial polarization shown in fig. 42b, all 
parts of the beam focus constructively to obtain a field which is essentially 
parallel to the optical axis. Youngworth and Brown [2000] performed some 
experiments on focusing of such beams, and the results agree with predictions. 
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§ 5. Concluding remarks 

An important property in many applications is that the power of the laser output 
beams be as high as possible. In many cases, high powers can be obtained by 
resorting to lasers operating with a high-order mode, whose intensity distribution 
has a larger cross-section than the fundamental Gaussian mode, so it could more 
efficiently exploit the gain medium. Indeed, high powers were demonstrated 
either with lasers in which GRMs, DPEs or SPEs were inserted into the resonator, 
or with self-imaging resonators. Moreover, because spatial coherence of the 
beams emerging from such lasers is high, they could be efficiently transformed 
into a nearly Gaussian beam (see sect. 4.2). The use of intra-cavity mode shaping 
and single high-order mode selection, rather than external mode shaping, has 
two advantages. First, the laser output power is relatively high since a larger 
volume of the gain medium is exploited. Second, there is no need for external 
beam shaping, which introduces both additional losses and some distortions to 
the output intensity distributions. 

When choosing between the different mode-selecting and mode-shaping 
methods, one should note that several methods are susceptible to small changes 
in the resonator, such as its length, or lensing properties of the gain medium 
(which can be caused by operating the laser with different pump powers). 
These include GPMs, diffractive elements and self-imaging or Fourier resonators, 
which are designed only for a specific set of parameters. Also, several 
methods are limited to specific resonator configurations. For example, self-
imaging (Talbot) resonators are practical mainly for waveguide or slab-laser 
configurations and are significantly less efficient for other types of resonators; 
Fourier resonators require the existence of Fourier planes in the resonator; 
and some methods are specific to unstable resonators. Other methods are 
more general, and could be exploited in various resonator configurations and 
parameters. 
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