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§ 1. Introduction

One of the important properties of an optical wavefront is the transverse field dis-
tribution of the beam, that is, the distribution of its amplitude and phase as well
as its polarization state. This field distribution determines the propagation behav-
ior of the beam, and its angular momentum. The ability to generate an arbitrary
complex scalar optical wavefront accurately is essential in modern optical appli-
cations. Although the ability to generate scalar beams is useful, in an increasing
number of cases it is desirable to create arbitrary vectorial beams. In general, vec-
torial beams are defined as beams having space-variant (transversely nonuniform)
polarization state.

Polarization is a fundamental property of electromagnetic fields. Accordingly,
the state of polarization of light has substantial influence in most optical exper-
iments and in the theoretical models developed to interpret them. In optics the
polarization state of a light field can significantly affect the propagation of many
fully or partially coherent paraxial light fields. However, its influence can never
be ignored in nonparaxial conditions when the field propagates in free space. Sig-
nificant polarization effects can occur during interaction with material interfaces
such as gratings, or arrangements of nanoparticles. Comprehensive background
information on polarization optics can be found in textbooks (see, for example,
Collett [2003] and Brosseau [1998]).

Recent years have witnessed a growing interest, theoretically as well as exper-
imentally, in space-variant polarization-state manipulation that can be exploited
in a variety of applications. These include polarization encoding of data(Javidi
and Nomura [2000]), neural networks and optical computing(Davidson, Friesem
and Hasman [1992a]), optical encryption(Mogensen and Glückstad [2000]), tight
focusing(Quabis, Dorn, Eberler, Glöckl and Leuchs [2000]), imaging polarime-
try (Nordin, Meier, Deguzman and Jones [1999]), material processing(Niziev
and Nesterov [1999]), and atom trapping and optical tweezers(Liu, Cline and He
[1999]).

The study of polarization manipulation has grown into a new branch of mod-
ern physical optics known as polarization singularities (see, for example,Nye
[1999] and Soskin and Vasnetsov [2001]). In a scalar field, such singularities ap-
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218 Space-variant polarization manipulation [4, § 1

pear at points or lines where the phase or the amplitude of the wave is undefined
or changes abruptly. One class of such dislocations is formed by vortices, which
are spiral phase ramps about a singularity. Vortices are characterized by a topolog-
ical chargel = 1

2π
∮ ∇ϕ ds, whereϕ is the phase of the beam andl is an integer.

Until recently, research had focused mainly on field dislocations in scalar waves.
However, if we allow for the polarization to be space-varying, disclinations can
arise (see, for example,Nye [1983], Dennis [2002], and Freund, Mokhun, Soskin,
Angelsky and Mokhun [2002]). Disclinations are points or lines of singularity in
the pattern or direction of a transverse field. An example is the center of a beam
with radial or azimuthal polarization.

Different techniques for obtaining space-variant polarization manipulation by
use of nonuniform anisotropic polarization elements have been reported in the
literature. In general, a polarization optical element is any optical element that
can modify the state of polarization of a light beam, such as a polarizer, retarder,
rotator, or depolarizer. Space-variant polarization elements can be implemented
as space-variant computer-generated sub-wavelength dielectric or metal gratings
(Hasman, Bomzon, Niv, Biener and Kleiner [2002]), polarization-sensitive mate-
rials such as azobenzene-containing materials(Todorov, Nikolova and Tomova
[1984]), and liquid-crystal devices(Davis, McNamara, Cottrell and Sonehara
[2000]). For the most general case, the transmission, retardation and optical-axis
orientation of such elements depend on the location across the face of the element.

In order to analyze the beam emerging from a space-variant polarization ele-
ment, we must resort to Jones and Mueller polarization-transfer matrix methods.
The Jones calculus assumes completely polarized light and coherent addition of
waves, whereas the Mueller calculus assumes partially polarized incoherent ad-
dition of waves. The space-dependent transfer matrices of Jones and Mueller can
be calculated by expressing the local behavior of the element as a polarizer and
retarder, while the local orientation of the optical axis can be obtained by apply-
ing the rotation matrix (see, for example,Collett [2003]). Moreover,Gori, San-
tarsiero, Vicalvi, Borghi and Guattari [1998]introduced an important method for
analyzing partially coherent sources with space-varying partial polarization utiliz-
ing the beam coherence-polarization matrix (BCP). This approach can be viewed
as an approximate form of Wolf’s general tensorial theory of coherence(Wolf
[1954]). Sometimes the local transmission and retardation of the polarization ele-
ment cannot be determined in a straightforward manner, for instance when using
gratings for which the period is close to or smaller than the incident beam’s wave-
length. In this case, a direct solution of Maxwell’s equations is required. This can
usually be accomplished by using numerical approaches, such as rigorous cou-
pled wave analysis (RCWA; seeMoharam and Gaylord [1986] and Lalanne and
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Morris [1996]), or utilizing finite-difference time-domain methods (FDTD) for
analyzing nonuniform polarization optics (see, for example,Mirotznik, Prather,
Mait, Beck, Shi and Gao [2000] and Jiang and Nordin [2000]).

Complex vectorial fields can be produced either by utilizing polarization ele-
ments (see, for example,Bomzon, Biener, Kleiner and Hasman [2002b]) or by us-
ing interferometric techniques involving two orthogonally polarized beams (see,
for example,Tidwell, Ford and Kimura [1990]). A coherent summation, inside the
laser resonator, of two orthogonally polarized TEM01 modes was demonstrated by
Oron, Blit, Davidson, Friesem, Bomzon and Hasman [2000]. Several designing
approaches for obtaining vectorial fields having space-varying polarization distri-
bution have been presented (see, for example,Niv, Biener, Kleiner and Hasman
[2004] and Tervo, Kettunen, Honkanen and Turunen [2003]).

In a remarkable paper first published in 1956,Pancharatnam [1956](reprinted
in Pancharatnam [1975]) considered the phase of a beam of light whose polariza-
tion state is modified. Pancharatnam showed that a cyclic change in the state of po-
larization of the light is accompanied by a phase shift determined by the geometry
of the cycle as represented on the Poincaré sphere(Brosseau [1998]). Therefore,
space-variant polarization-state manipulations are accompanied by a phase modi-
fication that results from the Pancharatnam–Berry phase(Berry [1987], Bomzon,
Kleiner and Hasman [2001d]). In order to investigate the propagation behavior
of complex vectorial fields as well as the angular momentum(Allen, Padgett and
Babiker [1999]), it is necessary to consider the resulting geometrical phase dis-
tribution. The calculation of the space-variant Pancharatnam phase is based on
the rule proposed byPancharatnam [1956]for comparing the phases of two light
beams in different states of polarization as the argument of the vectorial projection
between the two polarization states.

The propagation of paraxial vector fields has been extensively studied theoret-
ically. Several vectorial treatments have been presented in both coherent (see, for
example,Gori [2001]) and partially coherent light fields (see, for example,James
[1994] and Seshadri [1999]). The simplest approach to studying arbitrarily polar-
ized beams is to decompose the representative field vector at any point of a section
into orthogonal linearly or circularly polarized parts. Free-propagation problems
can then be performed as the analysis of the propagation of a pair of scalar waves
(Goodman [1996]). On the other hand, for specific beams with axial-symmetric
polarization distribution, significant results have been obtained by representing
the field at a typical point as a superposition of radial and azimuthal components.
Jordan and Hall [1994]showed that the propagation process of an azimuthally po-
larized Bessel–Gauss beam can be analyzed by means of a single one-dimensional
propagation integral with a suitable kernel. A general vectorial decomposition
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of electromagnetic fields with application to propagation-invariant and rotating
fields was presented byPääkkönen, Tervo, Vahimaa, Turunen and Gori [2002].
Vectorial Talbot self-imaging and vectorial nondiffracting beams have been in-
vestigated for a wave field with periodic variations of the polarization state (e.g.,
Mishra [1991]), and have been demonstrated experimentally(Arrizón, Tepichin,
Ortiz-Gutierrez and Lohmann [1996]). Moreover,Gori, Santarsiero, Borghi and
Piquero [2000]introduced an important method for analyzing the propagation of
partially coherent beams with space-varying partial polarization by extension of
the van Cittert–Zernike theorem using the beam coherence polarization matrix
(see, for example,Mandel and Wolf [1995]).

In the nonparaxial case, e.g., the propagation of the beam emerging from a lens
with high numerical aperture (NA), one must resort to a vectorial formulation
that takes into account polarization effects and nonuniformity of the amplitude
over the wavefront. A mathematically tractable representation for dealing with
polarization was developed byDebye [1909], and a representation for handling
apodization was addressed byHopkins [1943]. These developments were later
generalized byWolf [1959], applied to the analysis of aplanatic refractive lenses
(free of spherical aberrations), and then exploited in investigations of the focal
distribution in a variety of focusing systems (see, for example,Richards and Wolf
[1959], Barakat [1987] and Sheppard and Wilson [1982]). Moreover, in a series of
seminal papers Quabis and colleagues(Quabis, Dorn, Eberler, Glöckl and Leuchs
[2001] and Dorn, Quabis and Leuchs [2003])demonstrated both theoretically and
experimentally the effectiveness of radially polarized doughnut beams focused by
a high-NA lens in achieving significantly tighter focusing in far-field optics than
had been possible with linearly polarized beams. The vectorial analysis of such
propagation problems can be performed by using the generalized Debye integral,
expressed for radially symmetric illumination (see, for example,Davidson and
Bokor [2004]).

The optical properties of the vectorial beam can be evaluated by measuring the
polarization distribution of the waves as well as their amplitude and phase dis-
tribution. The polarization state of the beam can conveniently be described geo-
metrically by the polarization ellipse. In this case, a specific polarization state is
characterized by the ellipticity and azimuthal angle of the major axis of an ellipse
with respect to some reference frame (see, for example, Chapter 3.1 ofBrosseau
[1998]). The ellipticity and azimuthal angle can be calculated from the Stokes
polarization parameters of the beam. There are four Stokes parameters, and these
can be used to determine an intensity formulation of a beam’s polarization state
(Stokes [1852]). Therefore, they are directly accessible as linear combinations of
the intensities measured by transmitting the beam through four different combina-
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tions of optical elements referred to as wave plates and polarizers (see Chapter 5 of
Collett [2003]). Henceforth, we will refer to this method as the four-measurements
technique. Another useful method is to measure the time-dependent signal after
the beam has been transmitted through a rotating optical component (referred to
as a quarter-wave plate) and then through a polarizer (see Chapter 13 ofCollett
[2003]). In this case, the Stokes parameters are derived by Fourier analysis of the
detected signal. Many versions of this method have been devised;Jellison [1987],
for example, proposed the use of a photoelastic modulator instead of the rotating
quarter-wave plate.

It is also desirable to be able to measure the transmission matrices of an optical
element for either Jones or Mueller formalism. Many optical schemes have been
proposed for this purpose. SeeJones [1948], Raab [1982] and Brosseau [1985]
for examples of Jones matrix measurement, andLu and Chipman [1998] and
Anderson and Barakat [1994]for demonstrations of Mueller matrix measurement.
All these methods are based on a set of experiments in which known polarization
states are fed into the optical system and the corresponding polarization states of
the output beam are then measured.

In this chapter, theoretical analysis as well as experimental methods for obtain-
ing space-variant polarization-state manipulation are reviewed along with several
related applications. Various vectorial fields having space-variant polarization dis-
tributions are discussed in detail, together with the data from experimental studies.

The structure of this review is as follows: in Section2 we review various meth-
ods for designing and realizing space-variant polarization-state manipulations.
The use of sub-wavelength gratings, polarization interference methods and liquid-
crystal devices for this purpose are considered. We also briefly describe the use
of polarization-sensitive recording materials and discuss some general design ap-
proaches for space-variant polarization optics.

In Section 3 we consider optical phase elements based on the space do-
main Pancharatnam–Berry phase. Unlike with diffractive and refractive elements,
the phase is not introduced through optical path differences, but results from
the geometrical phase that accompanies space-variant polarization manipulation.
Optical elements that use this effect to form a desired phase front are called
Pancharatnam–Berry phase optical elements (PBOEs). The ability of PBOEs to
generate complex wavefronts is demonstrated by forming helical wavefronts and
polarization-sensitive beam splitters as well as polarization-dependent focusing
lenses. The effect of the Pancharatnam–Berry phase on the propagation of vec-
torial beams is investigated in this study through the formation of either one- or
two-dimensional vectorial propagation-invariant beams and vectorial Talbot ef-
fect.
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Section4 elaborates on selected applications of space-variant polarization ma-
nipulation. Among the topics discussed are: near and far-field polarimetry, light
depolarization, polarization encryption, optical computing, and spatial control
over polarization-dependent emissivity. Finally, Section5 presents some conclud-
ing remarks.

§ 2. Formation of space-variant polarization-state manipulations

In this section we review the basic formation methods enabling the design and
realization of space-variant polarization-state manipulations. We begin by de-
scribing the use of sub-wavelength gratings as space-variant polarizers and wave
plates. A design method for performing two-dimensional polarization elements
utilizing space-variant sub-wavelength gratings is presented. The method is based
on determining the local direction and period of the sub-wavelength metal or di-
electric gratings to obtain any desired continuous polarization change. As an ex-
ample, we introduce the formation of linearly polarized axially symmetric beams
with various polarization order numbers. We proceed by describing the space-
variant vectorial fields that are obtained by the polarization interference method.
In this case vectorial fields are formed by the superposition of orthogonally po-
larized transverse modes. The superposition is carried out either externally, i.e.,
by using an interferometer, or within a laser cavity. Next, we proceed by describ-
ing space-variant polarization-state manipulations that are obtained using liquid-
crystal devices. In this case the liquid-crystal device acts as a space-variant wave
plate. Finally, we briefly describe the use of polarization-sensitive recording ma-
terials and some general design approaches for space-variant polarization-state
manipulations.

2.1. Space-variant polarization-state manipulation by use of sub-wavelength
gratings

Sub-wavelength gratings have opened up new methods for forming beams with
sophisticated phase and polarization distributions. Such gratings are usually used
to form homogeneous space-invariant polarizers or wave plates. When the period
of the grating is much smaller than the incident wavelength, only the zeroth or-
der is propagating, and all other orders are evanescent. These gratings behave as
layers of a uniaxial crystal. Therefore, the use of space-variant (transversely inho-
mogeneous) sub-wavelength gratings permits the generation of complex vectorial
wavefronts with a different polarization state at each location.
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2.1.1. Background

The term “sub-wavelength gratings” refers to optical elements comprising typi-
cal structures that are smaller than the wavelength for which the elements were
designed. Sub-wavelength gratings are usually one- or two-dimensional periodic
structures, such as the one-dimensional grating depicted infig. 1. When light is
incident upon a sub-wavelength grating, all diffraction orders become evanescent.
The only propagating intensity is due to the zeroth order, and the grating behaves
as a uniaxial (or biaxial) crystal with its optical axes parallel and perpendicular
to the grating stripes. The threshold period below which only the zeroth order is
propagating is given by

(2.1)Λth = λ

n1 sinζ + (n2
2 − n2

1 sin2 θ)1/2
.

Here, θ is the azimuth relative to the grating stripes,ζ is the angle of inci-
dence,n1 and n2 are the refractive indices of the grating stripes, andλ is the
wavelength of the incident light. Sub-wavelength gratings can be either space-
invariant or space-variant, and have been used for fabricating anti-reflection coat-
ings(Grann, Moharam and Pommet [1994]), artificial refractive index distribution
(Mait, Prather and Mirotznik [1999]), polarization-selective computer-generated
holograms(Xu, Tyan, Sun, Fainman, Cheng and Scherer [1996]), optical filters

Fig. 1. Illustration of a one-dimensional periodic binary sub-wavelength grating. The grating period
Λ comprises alternating stripes with refractive indexesn1 andn2 and widthst1 andt2, respectively.
q = t1/Λ is defined as the duty cycle,ζ is the incidence angle andθ is the azimuthal angle. Note that

the period is smaller than the incident wavelength,λ.
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(Puscasu, Spencer and Boreman [2000]), wave plates(Brundrett, Glytsis and Gay-
lord [1996])and polarizers(Bird and Parrish [1960]). Their use can be dated back
to 1888 when Heinrich Hertz used sub-wavelength metal stripe gratings as radio-
wave polarizers(Hertz [1893]).

Gratings play an important role in optics. Their use has helped lay the foun-
dations of such fields as spectroscopy and diffractive optics. Loosely speaking,
when the variations of the surface relief or index modulation are slow compared
to the wavelength,λ, the polarization of the incident wave can be neglected and
approximate scalar theories can be used(Goodman [1996], Hasman, Davidson
and Friesem [1991]). However, as the period of the grating decreases and be-
comes comparable or smaller than the wavelength, vectorial effects become more
dominant, and rigorous electromagnetic theories are needed. Unfortunately, few
rigorous analytical solutions are known, and the calculation of diffraction from
such gratings generally requires numerical methods(Challener [1996], Guizal and
Felbacq [1999]). The most commonly used method for these calculations is rig-
orous coupled wave analysis (RCWA), which was formulated byMoharam and
Gaylord [1986]. An unfortunate drawback of RCWA is that it converges slowly
for metallic lamellar gratings. This problem was addressed byLalanne and Mor-
ris [1996]who reformulated the eigenvalues problem to achieve highly improved
convergence rates, thereby extending the usefulness of RCWA-related methods.
Another common method is the finite-difference time-domain method (FDTD)
(see, for example,Mirotznik, Prather, Mait, Beck, Shi and Gao [2000] and Jiang
and Nordin [2000]). However, despite the success of RCWA and other numeri-
cal approaches, they tend to be calculation-intensive and offer very little intuitive
insight into sub-wavelength grating problems. For this reason, approximate meth-
ods are often sought.

The simplest approximate model for sub-wavelength gratings is the classical
form birefringence(seeBorn and Wolf [1999]). This zero-order approximation
gives the effective refractive indices of a binary sub-wavelength grating with the
geometry depicted infig. 1 as

(2.2)n2
TE = qn2

1 + (1 − q)n2
2,

(2.3)n2
TM = n2

1n
2
2

qn2
2 + (1 − q)n2

1

,

where the subscriptsTE andTM denote light that has been polarized parallel and
perpendicular to the grating stripes, respectively;n1 andn2 denote the refractive
indices of the materials that comprise the grating, andq = t1/Λ is the duty cycle
of the grating, i.e. the relative portion of the material with refractive indexn1

within the grating. Thus, the grating is replaced by an effective layer consisting
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of a uniaxial crystal. If the grating period is not binary, then it is approximated
with a step function, and the effective refractive indices for each step are calcu-
lated using eqs.(2.2) and (2.3). The structure is then replaced with a multilayer
stack whose properties can be calculated using transfer-matrix methods(Macleod
[1989], Yeh [1979]).

Some very important results regarding sub-wavelength gratings were presented
by Rytov [1956]. He showed that the effective refractive indices for a sub-
wavelength grating could be found from a pair of transcendental equations,

(
n2

1 − n2
TE

)1/2
tan

[
π

λ

Λ
(1 − q)

(
n2

1 − n2
TE

)1/2
]

(2.4)= −(
n2

2 − n2
TE

)1/2 tan

[
π

λ

Λ
q
(
n2

2 − n2
TE

)1/2
]
,

(n2
1 − n2

TM)1/2

n2
1

tan

[
π

λ

Λ
(1 − q)

(
n2

1 − n2
TM

)1/2
]

(2.5)= −(n2
2 − n2

TM)1/2

n2
2

tan

[
π

λ

Λ
q
(
n2

2 − n2
TM

)1/2
]
,

whereλ is the incident wavelength andΛ is the grating period. Developing these
equations into a Taylor series yields second-order approximations,

(2.6)n
(2)
TE =

{[
n

(0)
TE

]2 + 1

3

[
πΛ

λ
q(1 − q)

]2(
n2

2 − n2
1

)2
}1/2

,

(2.7)

n
(2)
TM =

{[
n

(0)
TM

]2 + 1

3

[
πΛ

λ
q(1 − q)

]2( 1

n2
2

− 1

n2
1

)2[
n

(0)
TM

]6[
n

(0)
TE

]2
}1/2

,

wheren
(0)
TM andn

(0)
TE are the zero-order solutions of eqs.(2.4) and (2.5)provided

by eqs.(2.2) and (2.3). Further research into form birefringence was conducted
by Bouchitte and Petit [1985]using homogenization techniques. They rigorously
proved that any refractive index distribution can be replaced by a stratified layer
as long as the period of the grating tends to zero.

The main difficulty in realizing sub-wavelength structures is their small feature
size which requires the use of advanced and often creative photolithographic tech-
niques. Roughly speaking, there are three methods for realizing these elements:
indirect writing (seeBowden [1994]), direct writing (seeWarren, Smith, Vawter
and Wendt [1995]) and interference writing (seeEnger and Case [1983]). In the
indirect writing process, a mask of the element is initially made. This mask is
usually a glass substrate onto which the relief pattern of the element has been
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placed. This is usually done by first coating the glass with a metal and then coat-
ing the metal with a photoresist. The pattern is developed onto the photoresist
using either a laser or an electron beam, and then etched, leaving the desired pat-
tern on the mask. The element can then be realized by imaging the mask onto
the photoresist-coated substrate. The photoresist on the substrate is then devel-
oped and a copy of the element can be made. If the pattern is not binary, then it
is necessary to make separate masks for the different layers. The main advantage
of this method is that it enables relatively cheap reproduction of a single element.
This technique was used byDeguzman and Nordin [2001]to fabricate a circular
polarizer for the mid-infrared regime.

The second method used is direct writing. In this technique, instead of mak-
ing a mask, a laser (usually UV) or electron beam is used to imprint the pattern
directly onto the substrate. The substrate is first coated with photoresist, and the
pattern is written directly onto this coated substrate. The pattern is then devel-
oped, and a single copy of the element is generated. An advantage of this method
is that it offers high resolution, especially when electron beams are used. For this
reason, it is widely used in academic research of sub-wavelength gratings for the
visible region(Lopez and Craighead [1998], Warren, Smith, Vawter and Wendt
[1995]). The downside is that the production time is long and the fabrication is
very expensive. Therefore, this method is not widely used for commercial pro-
duction.

Interference recording is the most commonly used method for the fabrication of
homogeneous one-dimensional gratings(Brundrett, Gaylord and Glytsis [1998],
Nordin, Meier, Deguzman and Jones [1999]). The sub-wavelength lines are pro-
duced by the interference of ultraviolet or blue laser light, leading to periods of
around 200 nm. This technique is very useful in the formation of space-invariant
gratings, and simple space-variant structures can be achieved by incorporating
simple computer-originated phase masks into the interferometer. However, its use
in forming intricate space-variant sub-wavelength gratings is rather limited.

There are also differences in the fabrication of metal and dielectric sub-
wavelength gratings. Metal sub-wavelength gratings are usually fabricated using
a lift-off process(Doumuki and Tamada [1997]). After the pattern has been trans-
ferred to the photoresist-coated substrate by either direct or indirect writing, the
photoresist is developed. The substrate is then coated with metal, and the photore-
sist removed. In this manner, the metal remains only in the areas that were clear
of photoresist after development. This technique is very useful in the realization
of thin metal stripes with sub-micron features. Since the metal stripes in a sub-
wavelength grating need not be much thicker than the skin depth, this technique is
well suited for the realization of space-variant metal-stripe sub-wavelength grat-
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ings for the IR and visible spectra. On the other hand, dielectric gratings are real-
ized using etching techniques.

Since the features of the sub-wavelength gratings are very small, and since the
depth-feature size aspect ratio is usually large, it is important to choose a tech-
nique that has a large degree of anisotropy. Dry etching is usually more suitable
than wet etching. In particular, reactive ion etching is especially useful(Lopez and
Craighead [1998], Deguzman and Nordin [2001], and Nordin, Meier, Deguzman
and Jones [1999]). After the photoresist on the substrate is developed, the element
is placed in a vacuum chamber and subjected to a bombardment of a plasma mix-
ture. The characteristics of the plasma are determined by the choice of etching
technique. The areas on the substrate that were coated by photoresist remain un-
touched, whereas the areas that were exposed to the plasma are etched away. In
this way a relief pattern is achieved on the substrate and a grating is realized.

Bomzon, Kleiner and Hasman [2001a]developed a novel method for design-
ing and realizing nonuniformly polarized beams using computer-generated space-
variant sub-wavelength gratings. Their design is based on determining the local
period and direction of the grating at each point, forming space-varying polariz-
ers or wave plates that convert uniformly polarized light into any desired space-
variant polarization. Their gratings are continuous, thereby guaranteeing the con-
tinuity of the electromagnetic field.

2.1.2. Space-variant polarization-state manipulation by use of sub-wavelength
metal gratings

Sub-wavelength metal stripe gratings are usually used as homogeneous space-
variant polarizers (seeGlytsis and Gaylord [1992], Honkanen, Kettunen, Kuit-
tinen, Lautanen, Turunen, Schnabel and Wyrowski [1999], Schnabel, Kley and
Wyrowski [1999] or Astilean, Lalanne and Palamaru [2000]). Sometimes, how-
ever, a different polarization state is required at each location.Bomzon, Kleiner
and Hasman [2001b, 2001c, 2001d]demonstrated an innovative method for de-
signing, analyzing and realizing computer-generated space-variant metal-stripe
polarization elements. This method is based on determining the local direction
and period of a sub-wavelength metal-stripe grating using vectorial optics to ob-
tain any desired continuous polarization change, hence, completely suppressing
any diffraction arising from polarization discontinuity. Analysis of the element
can then be performed using an original method combining RCWA and Jones
calculus, in which the element is represented as a space-varying Jones matrix,
which is defined by the local period and orientation of the grating.
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Gratings are typically defined by a grating vector that is perpendicular to the
grating stripes. A space-varying grating can therefore be described by the vector

(2.8)Kg(x, y) = K0(x, y) cos
(
θ(x, y)

)
x̂ + K0(x, y) sin

(
θ(x, y)

)
ŷ,

whereK0(x, y) is the spatial frequency of the grating,θ is the direction of the
vector, and̂x, ŷ are the unit vectors along thex-axis and they-axis, respectively.
In order for such a grating to be physically realizable in a continuous way,Kg

should be a conserving vector, i.e.,∇ × Kg = 0, or more explicitly,

(2.9)
∂K0

∂y
cos(θ) − K0 sin(θ)

[
∂θ

∂y

]
= ∂K0

∂x
sin(θ) + K0 cos(θ)

[
∂θ

∂x

]
.

This necessary restraint is placed onK0(x, y) to enable a continuous grating with
a local groove directionθ(x, y) to exist. Once the grating vector is determined,
the grating functionφg(x, y) can be found by integratingKg along any arbitrary
path in thex–y plane so that∇φg = Kg. A Lee-type(Lee [1974])binary sub-
wavelength structure mask described by the grating functionφg(x, y) can be real-
ized using high-resolution laser lithography. The amplitude transmission for such
a Lee-type binary mask can be derived as

(2.10)t (x, y) = Us

[
cos(φg) − cos(πq)

]
,

whereUs is the unit step function, defined by

(2.11)Us(η) =
{

1, η � 0,

0, η < 0,

andq is the duty cycle of the grating.
Bomzon, Kleiner and Hasman [2001b]have applied this method to the design

of a space-variant polarization element, which enables the transformation of cir-
cularly polarized light into a wave with a direction of polarization that is a linear
function of thex-coordinate. The element was fabricated as metal-stripe gratings
on GaAs and ZnSe wafers using lift-off techniques.Figure 2(a) shows the magni-
fied geometry of such a computer-generated mask with the resulting transmission
axis varying in thex-direction from 0◦ to 90◦. The continuity of the grating is
clearly apparent.Figure 2(b) shows experimental measurements of the azimuthal
angle for a circularly polarized CO2 laser beam transmitted through the space-
variant polarizer. These experimental results, based on complete space-variant
Stokes-parameter measurement (seeCollett [1993]), revealed 98.6% overall po-
larization purity, taking into account the azimuthal and ellipticity deviations.
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Fig. 2. (a) Magnified illustration of the computer-generated space-variant polarization element geom-
etry. (b) Experimental measurement of the two-dimensional space-variant polarization orientations.
The arrows indicate the direction of the large axis of the local polarization ellipse. (FromBomzon,

Kleiner and Hasman [2001a].)

2.1.3. Formation of linearly polarized light with axial symmetry by using
space-variant sub-wavelength dielectric gratings

Recent years have witnessed a growing interest in beams of a transversally space-
variant polarization state. One of the most interesting types of such beams is the
linearly polarized axial symmetric beam (LPASB). LPASBs are characterized by
their polarization orientationψ(ω) = mω+ψ0, wherem is the polarization order
number,ω is the azimuthal angle of the polar coordinate system, andψ0 is the
initial polarization orientation forω = 0. Figure 3(a) illustrates LPASBs of po-
larization order numbersm = 1 andm = 2. Note that LPASBs have a singularity
of their polarization state at the beam axis and, therefore, have a vectorial vortex-
like structure. The most renowned members of the LPASB family are the radial
(m = 1, ψ0 = 0) and azimuthal (m = 1, ψ0 = 1

2π) beams, which are extensively
used for the improvement of applications such as particle acceleration, atom trap-

Fig. 3. (a) Illustration of linearly polarized light with axial symmetry with different polarization orders.
(b) Geometrical definition of the grating vector. (FromNiv, Biener, Kleiner and Hasman [2003].)
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ping, optical tweezers(Allen, Padgett and Babiker [1999]), material processing
(Niziev and Nesterov [1999]), and tight focusing(Quabis, Dorn, Eberler, Glöckl
and Leuchs [2000]).

Two separate conditions have to be met if we wish to convert circularly po-
larized light into a LPASB using sub-wavelength gratings. The first is converting
the circularly polarized light into linearly polarized light by inducing1

2π retar-
dation on the incident wave. The second is creating the proper local polarization
direction. The first condition is met by choosing the correct shape for the sub-
wavelength grooves while the second is fulfilled by creating local groove orienta-
tion of the form

(2.12)θ(ω) = ψ(ω) − 1
4π = mω + ψ0 − 1

4π.

An axially symmetric space-variant sub-wavelength grating is typically de-
scribed by a grating vector of the form

(2.13)Kg(r, ω) = K0(r, ω)
[
cos

(
θ(r, ω) − ω

)
r̂ + sin

(
θ(r, ω) − ω

)
ω̂

]
,

where r̂, ω̂ are unit vectors in polar coordinates (fig. 3(b)), and K0(r) =
2π/Λ(r, ω) is the local spatial frequency for a grating of local periodΛ(r, ω).
Next, to ensure the continuity of the grating, we require that∇ × Kg = 0, result-
ing in a differential equation that can be solved to yield the local grating period.
The solution to this problem yieldsK0(r) = (2π/Λ0)(r0/r)m, whereΛ0 is the lo-
cal sub-wavelength period atr = r0. IntegratingKg over an arbitrary path yields
the desired grating function (defined such that∇φg = Kg) as

φg(r, ω) = 2πr0(r0/r)m−1 sin
[
(m − 1)ω + ψ0 − 3

4π
]/[

(m − 1)Λ0
]
(2.14a)for m �= 1,

φg(r, ω) = (2πr0/Λ0)
[
ln(r/r0) cos

(
ψ0 − 1

4π
) + ω sin

(
ψ0 − 1

4π
)]

(2.14b)for m = 1.

Niv, Biener, Kleiner and Hasman [2003]realized Lee-type binary grating func-
tions form = 1

2, 1, 3
2, 2 andψ0 = 1

4π . The gratings were fabricated on 500 µm-
thick GaAs wafers for CO2 laser radiation with a wavelength of 10.6 µm, with
Λ0 = 2 µm,r0 = 4.7 mm, and a maximum radius of 6 mm. They formed the
gratings with a maximum local period of 3.2 µm in order not to exceed the Wood
anomaly of GaAs.

Figure 4(a) shows the intricate geometry of a sub-wavelength stripe grating
designed to convert circularly polarized light into LPASB.Figure 4(b) shows an
image obtained by using a linear polarizer as an analyzer. Note that for each beam
the polarization state repeats itself 2m times. Experimental values of the local
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Fig. 4. (a) Magnified geometry of the sub-wavelength gratings for different polarization orders,
m = 1

2 , 1, 3
2 , 2. (b) Experimental intensity distributions, directly after the gratings of different polar-

ization orders, of the beams emerging from a linear polarizer–analyzer. (c) Measured local azimuthal
angles of the beams. (FromNiv, Biener, Kleiner and Hasman [2003].)

azimuthal angleψ at each point are shown infig. 4(c). The manipulation resulted
in a high polarization purity of over 98% in the desired direction.

Additional insight can be obtained by performing polarization-state and phase
analysis of the resulting beam. By representing the element as a space-variant
Jones matrix, the resultant wavefront can be found for any incident polariza-
tion (see, for example,Hasman, Bomzon, Niv, Biener and Kleiner [2002]). For
a space-varying quarter-wave plate and incident right-hand circular polarization,
the Jones vector of the resultant beam is

(2.15)Eout(r, ω) =
(

cos(mω + ψ0)

sin(mω + ψ0)

)
exp

[−i(mω + ψ0)
]
.

Using the rule proposed byPancharatnam [1956]for comparing the phases of two
light beams in different states of polarization, we can now calculate the space-
variant Pancharatnam phase of the transmitted beam as

(2.16)ϕp = arg
〈
E(r, ω), E(R, 0)

〉
,

where arg〈E(r, ω), E(R, 0)〉 is the argument of the inner product of the two vec-
tors and (R, 0) are the coordinates of the point on the resultant beam with respect
to which the phase is measured. This calculation yields

(2.17)ϕp = arg
[
cos(mω + ψ0)

] − mω.
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This phase modification results solely from the polarization manipulation and
is purely geometrical in nature(Bomzon, Niv, Biener, Kleiner and Hasman
[2002b]). The beam displays a Pancharatnam phase ramp with a helical structure
similar to those found in scalar optical vortices; therefore, we define the topolog-
ical Pancharatnam charge of the beam as

(2.18)lP = (1/2π)

∮
∇ϕp ds = −m,

where ds is an infinitesimal distance in the direction of the integration path. Note
that in our case the Pancharatnam charge and the polarization order number are
equal in magnitude and opposite in sign. This charge can be modified by transmis-
sion of the beam through a spiral phase element of the form exp(ildω), (ld integer),
whereby a topological charge ofld is added to the beam.

Figures 5(a) and 5(c)show the calculated real parts of the instantaneous fields
of LPASBs.Figure 5(a) shows the fields of the beams formed by use of the grat-
ings only, form = 1

2, 1, 3
2, 2, andψ0 = 1

4π . Figure 5(c), on the other hand,
shows the beams that are created when, in addition to the grating, the waves of
fig. 5(a) are also transmitted through spiral phase elements bearing topological
chargeld = m. The result is the cancellation of the Pancharatnam phase while

Fig. 5. Calculated real part of the instantaneous vector fields for beams (a) emerging from the gratings
only, and (c) with additional spiral phase element ofld = m. (b, d) Experimental far-field images for
the beams and their calculated (solid curves) and measured (solid circles) cross-sections. [(b) and (d)

correspond to (a) and (c), respectively.] (FromNiv, Biener, Kleiner and Hasman [2003].)
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maintaining both the same space-variant polarization directions as well as the
same polarization order numberm. In cases where the polarization order number
is a half-integer (e.g.,m = 1

2, 3
2), the fields of the beams having Pancharatnam

phase (fig. 5(a)) are continuous, whereas the fields offig. 5(c) without the Pan-
charatnam phase are discontinuous. This indicates that the formation of contin-
uous LPASBs with a half-integer polarization order is possible only for beams
having a topological Pancharatnam charge.

Figure 5 also shows the experimental far-field images of these fields, with
figs. 5(b) and 5(d)corresponding tofigs. 5(a) and 5(c), respectively, as well as
the calculated and measured cross-sections. Note that the beams emerging from
only the gratings,fig. 5(b), exhibit far-field images with bright centers, while the
beams undergoing a cancellation of the Pancharatnam phase exhibit distinct far-
field images with dark centers,fig. 5(d). There is a close connection between the
instantaneous electric field (figs. 5(a), 5(c)) and the appearance of a bright or dark
spot at the far-field image of the beams. When the integral of the real part of the
instantaneous electric field around the beam axis is zero,

(2.19)Re

( ∫ 2π

0
E(ω) dω

)
=

(
0
0

)
,

a dark spot at the far-field is obtained; conversely, a nonzero sum reveals a bright
spot. The experimental results indicate that LPASBs with identical polarization
orders, but of different Pancharatnam phases, propagate in different ways, which
emphasizes the relevance of correct phase determination in the propagation of
space-variant polarization beams.

Another point of interest is the angular momentum of such beams. For a scalar
wave, the angular momentum in the direction of propagation per unit energy is
given by jz = (l + σ)/(2πν) (see, for example,Allen, Padgett and Babiker
[1999]), wherel is the topological charge,σ is the helicity (±1 for circular po-
larization) andν is the optical frequency of the beam. Using this rule and the
decomposition ofEout into circular polarization states yields the angular momen-
tum of LPASBs as

jz = 1

2

∑
i=L,R

(li + σi)/(2πν) = (ld − m)/(2πν) = lp/(2πν),

whereL andR indicate the components with left and right circular polarization,
respectively, and show that the angular momentum of these waves is given by the
topological Pancharatnam charge. This result introduces a connection between
angular momentum and topological Pancharatnam charge.

The formation of both radial and azimuthal beams can also be achieved by the
use of methods such as interferometric techniques, intracavity summation of two
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orthogonally polarized TEM01 modes, or by using liquid-crystal devices, as will
be discussed in the following subsections.

2.2. Space-variant vectorial fields obtained by using interference methods

In this subsection we present laser resonator configurations and interferometric
techniques in which the polarization in different parts of the output beam can
be varied, generating, in effect, an output beam with space-variant polarization.
Two interferometric techniques for converting a linearly polarized laser beam
into a radially polarized beam with uniform azimuthal intensity were presented
by Tidwell, Ford and Kimura [1990]. In the first method, linearly polarized beams
with intensity profiles tailored using a modified laser or an apodization filter are
combined in separate experiments to produce radially polarized light. The linear
polarization-combining technique uses a Mach–Zehnder arranged as a 90◦ rota-
tion shear interferometer operating on the null fringe, as shown infig. 6(a). The
second technique, shown infig. 6(b), uses circularly polarized light instead of lin-
early polarized light, and a unique spiral phase-delay plate to produce the required
phase profile. In a later study,Tidwell, Kim and Kimura [1993]presented a hy-
brid of these two earlier approaches for the conversion of a linearly polarized CO2

laser beam into a radially polarized beam. The result is a double-interferometer
system that is able to convert any linearly polarized laser beam profile into a radi-

Fig. 6. Mach–Zehnder interferometer configurations used to produce radially polarized beams. (a) 90◦
rotational shear interferometer that converts a sinusoidally varying linearly polarized beam. (b) Con-
ventional Mach–Zehnder for converting a general linearly polarized beam using spiral delay of circu-
larly polarized light. (M= mirror, BS= beam splitter, P= polarizer, PS= periscope, SPDP= spiral

phase delay plate.) (FromTidwell, Ford and Kimura [1990].)
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ally polarized one with high efficiency. Using this method, the authors were able
to generate a beam that was∼ 92% radially polarized and contained∼ 85% of
the input power.

Azimuthal and radial polarizations have also been obtained by inserting
polarization-selective elements into a laser resonator.Pohl [1972]inserted a bire-
fringent calcite crystal with the principal axis along thez-axis (z-cut), into a
pulsed ruby laser in order to discriminate between azimuthal and radial polariza-
tion. Wynne [1974]generalized this method and showed experimentally, with a
wavelength-tunable dye laser, that it is possible to select either the azimuthally or
the radially polarized modes.Mushiake, Matsumura and Nakajima [1972]used
a conical intra-cavity element to select a radially polarized mode. The conical
element introduced low reflection losses to the radially polarized mode but high
reflection losses to the azimuthally polarized mode. This method is somewhat
similar to applying a Brewster window to obtain linear polarization. Similarly,
Tovar [1998]suggested using complex Brewster-like windows, of either coni-
cal or helical shape, to select radially or azimuthally polarized modes.Nesterov,
Niziev and Yakunin [1999]replaced one of the mirrors of a high-power CO2 laser
with a sub-wavelength diffractive element. This element consisted of either con-
centric circles (for selecting azimuthal polarization) or straight lines through a
central spot (for selecting radial polarization) to obtain different reflectivities for
the azimuthal and radial polarizations. Experimentally, a high output power of
1.8 kW was obtained, but the polarization purity was relatively low, with mixed
transverse mode operation.Liu, Gu and Yang [1999]analyzed a resonator config-
uration into which two sub-wavelength diffractive elements were incorporated, to
obtain a different fundamental mode pattern for two different polarizations.Oron,
Blit, Davidson, Friesem, Bomzon and Hasman [2000]presented a method for
efficiently obtaining essentially pure azimuthally and radially polarized beams di-
rectly from a laser. The method is based on the selection and coherent summation
of two linearly polarized transverse modes that exist inside the laser resonator;
specifically, two orthogonally polarized TEM01 modes.Figure 7(a) depicts an
azimuthally polarized beam, obtained by coherent summation of ay-polarized
TEM01(x) mode and anx-polarized TEM01(y) mode.Figure 7(b) shows a ra-
dially polarized beam, obtained by the coherent summation of anx-polarized
TEM01(x) mode and ay-polarized TEM01(y) mode. The modes are selected by in-
serting phase elements that permit significant mode discrimination into the laser
resonator when properly combined. The laser resonator configuration in which
specific transverse modes are selected and coherently summed is schematically
shown infig. 8.
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Fig. 7. Coherent superposition of two orthogonally polarized TEM01 modes to form azimuthally and
radially polarized beams. (a) Azimuthally(θ) polarized doughnut beam. (b) Radially (r) polarized

doughnut beam. (FromOron, Blit, Davidson, Friesem, Bomzon and Hasman [2000].)

Fig. 8. Laser resonator configuration with a discontinuous phase element (DPE) for forming an az-
imuthally or radially polarized beam. (FromOron, Blit, Davidson, Friesem, Bomzon and Hasman

[2000].)

2.3. Space-variant vectorial fields obtained by using liquid-crystal devices

Liquid crystals have been selected as optical materials because of the flexibil-
ity they provide in designing new optical components.Stalder and Schadt [1996]
suggested the use of a liquid-crystal device for generating linearly polarized light
with axial symmetry using two optical effects. In the first case they realigned the
incoming linearly polarized light by using the twisted nematic effect. The study
made use of a basic cell consisting of one unidirectionally and one circularly
rubbed alignment layers and filled with nematic liquid-crystal. The local liquid-
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Fig. 9. Generation of radially and azimuthally polarized light. (FromStalder and Schadt [1996].)

crystal orientation in the cell is that of a twisted cell with a variable twist angle
defined by the local alignment layers. The generation of radially and azimuthally
polarized light using this type of cell is illustrated infig. 9. The authors also pro-
posed the generation of light having a polarization order numberm = 2 by using
the effect of12λ wave plates in liquid-crystal devices that exhibit spatially variable
alignment layers. In this study, the liquid-crystal cell consists of two circularly
rubbed alignment layers with aligned centers of symmetry. The substrate glasses
are coated with transparent electrodes. By applying the correct electric field be-
tween the electrodes, the cell becomes a1

2λ plate whose fast axis rotates one full
rotation around the beam axis, for a givenλ. Two-dimensional encoding of the po-
larization state of a laser beam was demonstrated byDavis, McNamara, Cottrell
and Sonehara [2000]using a parallel-aligned liquid-crystal spatial light modula-
tor (LCSLM). Each pixel of the LCSLM acts as a voltage-controlled wave plate
that is capable of phase modulation over 2π rad at an argon laser wavelength of
514.5 nm.

A liquid-crystal-based polarization grating was reported byWen, Petschek and
Rosenblatt [2002]. In this case, the orientation of one or both of the polarization
eigenvectors is altered as light passes through the liquid-crystal cell. In one of
its simplest forms, the grating permits only odd-order diffraction peaks. The re-
searchers also developed more complex gratings, including a grating that rotates
both polarization components in tandem, while simultaneously applying relative
phase retardation. For an appropriate rotation and retardation, the device simu-
lates a blazed grating for circularly polarized light. In addition, because the polar
orientation of the liquid-crystal director can be controlled by an electric field ap-
plied across semitransparent indium tin oxide electrodes, one can switch the cell
from grating mode to straight-throughput mode.

A method that permits the accurate generation of arbitrary complex vector wave
fields by using a binary optical element was described byNeil, Massoumian,
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Juškaitis and Wilson [2002]. The binary phase modulation was achieved by a re-
configurable ferroelectric liquid-crystal spatial light modulator (FLCSLM). How-
ever, the binarization process leads to a maximum efficiency in the first diffracted
order of just 40.5%, and the use of only half of the light in the first diffracted order
for each polarization reduces this to 20.25%. In addition, the form of particular
desired complex fields (the amplitude and phase of the components) could lead to
additional reductions in efficiency. Finally,Davis, Adachi, Fernández-Pousa and
Moreno [2001]used a parallel-aligned active matrix nematic liquid-crystal spa-
tial light modulator to realize a spatially variable wave plate for which the relative
phase retardation varies linearly along thex-direction asφ = 2πx/Λ, whereΛ is
the period. Interestingly, the diffracted order is linearly polarized in this case, re-
gardless of the incoming polarization state. This is contrary to the case presented
in Section3 and in the work ofHasman, Bomzon, Niv, Biener and Kleiner [2002]
in which constant retardation and space-variant sub-wavelength gratings produce
diffracted orders that are always circularly polarized (seeCincotti [2003]).

2.4. Alternative methods

Another technique to achieve space-variant polarization-state manipulation is by
holographic recording using polarization-sensitive materials. In this procedure,
a space-variant polarized beam illuminates a polarization-sensitive recording ma-
terial. The beam is typically generated interferometrically, as described in Sec-
tion 2.2. When the hologram is illuminated using only one arm of the interfer-
ometer, a full reconstruction of the space-variant polarized beam emerges. This
method was first described byKakichashvili [1972], who used the Weigert ef-
fect (optical anisotropy induced in a fine-grain silver chloride photographic emul-
sion by exposure to a beam of linearly polarized light) for holographic recording
and reconstruction of the polarization state of a beam. However, further progress
in polarization holography was hampered mainly by the low efficiency of the
recorded holograms (<1%). This situation remained untilTodorov, Nikolova and
Tomova [1984]introduced a new polarization-sensitive material: a methyl orange
azo dye in a polyvinyl alcohol matrix. They demonstrated that high-efficiency po-
larization holograms (>35%) can be recorded repeatedly. This seminal work trig-
gered a variety of research aiming to find ever more efficient and stable materials.
Among these researchers,Ciuchi, Mazzulla and Cipparrone [2002]demonstrated
long-time stability (over a year’s period) in two kinds of azo-dye elastomer films,
while Holme, Ramanujam and Hvilsted [1996]reported 10,000 rapid write, read
and erase cycles in an azobenzene sidechain liquid-crystalline polyester. Also,
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a veritable wave of applications emerged mainly for the optical storage of data.
Among them was that ofKawano, Ishii, Minabe, Niitsu, Nishikata and Baba
[1999] which proposed digital holographic storage with polarization multiplex-
ing by use of polyester-containing cyanoazobenzene units in the side chain. In
another researchFerrari, Garbusi and Frins [2004]demonstrated phase-shifting
interferometry using bacteriorhodopsin film.

It is worth mentioning that the ability to perform space-variant polarization-
state manipulations led to the development of several designing techniques.Tervo,
Kettunen, Honkanen and Turunen [2003]proposed iterative design algorithms of
diffractive elements for paraxial vector fields. Specifically, they showed that utiliz-
ing the local polarization state of a beam as an additional design freedom leads to
more light-efficient design with minimal trade-off between diffraction efficiency
and signal quality.Cincotti [2003]showed that the polarization state of the dif-
fracted waves (higher-order waves) does not depend on the polarization state of
the incoming wave but that they are fully determined by the polarization grating.
She used this approach to propose a general model for polarization gratings that
can be exploited for the design of such elements.

§ 3. Geometrical phase in space-variant polarization-state manipulation

The Pancharatnam–Berry phase is a geometrical phase associated with the polar-
ization of light. When the polarization of a beam traverses a closed loop on the
Poincaré sphere, the final state differs from the initial state by a phase factor equal
to half the Area (Ω) encompassed by the loop on the sphere (seePancharatnam
[1956], Berry [1984], and Shapere and Wilczek [1989]). In a typical experiment,
the polarization of a uniformly polarized beam is altered by a series of space-
invariant (transversely homogeneous) wave plates and polarizers, and the phase,
which evolves in the time-domain, is measured by means of interference(Simon,
Kimble and Sudarshan [1988], Kwiat and Chiao [1991]).

Niv, Biener, Kleiner and Hasman [2003]considered a Pancharatnam–Berry
phase in the space domain. Using space-variant dielectric sub-wavelength grat-
ings, they demonstrated conversion of circularly polarized into linearly polar-
ized axially symmetric beams. They showed that the conversion was accompa-
nied by a space-variant phase modification of geometrical origin that affected
the propagation of the beams. An earlier study byBomzon, Kleiner and Hasman
[2001d]demonstrated a Pancharatnam–Berry phase in space-variant polarization-
state manipulation using space-variant metal-stripe sub-wavelength gratings.

Frins, Ferrari, Dubra and Perciante [2000]described a method for generating
arbitrary axial phase discontinuities that is based on Pancharatnam’s theorem.
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Fig. 10. Setup for the generation of phase dislocations.Q1 andQ2 are rectangular QWPs with their
respective fast axes (F.A.) orthogonal to each other; P1 is a polarizer at 45◦ with respect to the axes of
the QWPs; P2 is a rotatable polarizer (analyzer);ν is the angle between the directions of the transmis-

sion axes of P1 and P2. (FromFrins, Ferrari, Dubra and Perciante [2000].)

They utilized this method for converting a bright, nondiffracting beam into a dark
one. The basic concept for producing the phase dislocation is shown infig. 10.
The design consists of two quarter-wave plates (QWPs) placed side by side with
their fast axes perpendicular to each other, sandwiched by two polarizers. The
transmission axis of the first polarizer is at 45◦ with respect to the fast axes of the
QWPs.Baba, Murakami and Ishigaki [2001]proposed using a space-variant geo-
metrical phase for applications such as null interferometry. Previously,Bhandari
[1997] suggested using a discontinuous spatially varying wave plate as a lens
based on similar geometrical phase effects.

Zhan and Leger [2002]reported an interferometric measurement of the geomet-
ric phase in space-variant polarization manipulation. They experimentally verified
it using a dichroic radial polarizer. A dichroic radial polarizer converts a circu-
larly polarized beam into an azimuthally polarized beam with a spiral geometri-
cal phase. A Mach–Zehnder interferometer, which is shown infig. 11, is used to
measure this spiral phase.

Conversion of an input polarization state into a space-variant polarization state
has been investigated using periodic polarization gratings.Gori [1999]proposed
using spatially rotating polarizers as a polarization grating whileFernández-
Pousa, Moreno, Davis and Adachi [2001]proposed using a polarization grating
with space-variant retardation realized by a liquid-crystal, spatial light modula-
tor. Tervo and Turunen [2000]proposed using a polarization grating formed by
spatially rotating wave plates. These authors showed that the polarization of the
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Fig. 11. Mach–Zehnder interferometer setup for the spiral geometric phase measurement. (FromZhan
and Leger [2002].)

diffracted orders could differ from the polarization of the incident beams. The
formation of complex vectorial fields by use of polarization gratings has been
discussed in greater detail in Section2.

In the present section we consider optical phase elements based on the space-
domain Pancharatnam–Berry phase. Unlike with diffractive and refractive ele-
ments, the phase is not introduced through optical path differences, but results
from the geometrical phase that accompanies space-variant polarization manip-
ulation. Optical elements that use this effect to form a desired phase front are
called Pancharatnam–Berry-phase optical elements (PBOEs). These elements are
polarization dependent, thereby permitting the construction of multi-purpose op-
tical elements that are suitable for applications such as optical switching, op-
tical interconnects and beam splitting (seeHasman, Bomzon, Niv, Biener and
Kleiner [2002]). Such elements can be realized using computer-generated space-
variant sub-wavelength dielectric gratings.Biener, Niv, Kleiner and Hasman
[2002] and Hasman, Kleiner, Biener and Niv [2003]experimentally demonstrated
Pancharatnam–Berry-phase diffraction gratings for CO2 laser radiation at a wave-
length of 10.6 µm, showing an ability to form complex polarization-dependent
phase elements.

Figure 12illustrates the concept of PBOEs on the Poincaré sphere. Circularly
polarized light is incident on a wave plate with constant retardation and a contin-
uously space-varying fast axis whose orientation is denoted byθ(x, y). Bomzon,
Biener, Kleiner and Hasman [2002c]showed that since the wave plate is space
varying, the beam at different points traverses different paths on the Poincaré
sphere, resulting in a space-variant phase-front modification originating from the
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Fig. 12. Illustration of the principle of PBOEs by use of the Poincaré sphere. (FromBomzon, Biener,
Kleiner and Hasman [2002c].)

Pancharatnam–Berry phase. Their goal was to utilize this space-variant geometri-
cal phase to form novel optical elements.

It is convenient to describe PBOEs using Jones calculus. In this representation,
a wave plate with a fast axis oriented along they-axis can be described by the
Jones matrix

(3.1)J =
(

tx 0
0 tyeiφ

)
,

wheretx and ty are the real amplitude transmission coefficients for light which
has been polarized perpendicular and parallel to the optical axes, andφ is the
retardation of the wave plate. A PBOE which contains wave plates with space-
variant orientation can be described by the space-dependent matrix

(3.2)TC(x, y) = JR

(
θ(x, y)

)
JJ−1

R

(
θ(x, y)

)
,

whereθ(x, y) is the local orientation of the optical axis andJR(θ) = (
cosθ − sinθ
sinθ cosθ

)
is a two-dimensional rotation matrix.

For convenience, we adopt the Dirac bra-ket notation, and convertTC(x, y)

to the helicity base in which|R〉 = (1 0)T and |L〉 = (0 1)T are the two-
dimensional unit vectors for right-hand and left-hand circularly polarized light,
and T denotes transposition. In this base, the space-variant polarization operator
is described by the matrixT(x, y) = UTCU−1, whereU = 2−1/2

(
1 i
1 −i

)
is a

unitary conversion matrix. Explicit calculation ofT(x, y) yields

T(x, y) = 1

2

(
tx + tyeiφ) (

1 0
0 1

)

(3.3)+ 1

2

(
tx − tyeiφ) (

0 exp[i2θ(x, y)]
exp[−i2θ(x, y)] 0

)
.
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Fig. 13. Operation of polarization diffraction gratings. A beam with polarization|Ein〉 is incident on
the polarization grating. The resulting beam comprises three polarization orders: the|Ein〉 polarization
order, which maintains the original polarization and does not undergo phase modification; the|R〉
polarization order that is right-hand circularly polarized, and whose phase is modified by 2θ(x, y);
and the|L〉 polarization order that is left-hand circularly polarized, and whose phase is modified by
−2θ(x, y). Whenθ(x, y) is periodic, the|R〉 polarization order and the|L〉 polarization order undergo
diffraction, resulting in the appearance of discrete diffraction orders. (FromHasman, Bomzon, Niv,

Biener and Kleiner [2002].)

Thus, for an incident plane wave with arbitrary polarization|Ein〉 the resulting
field is

(3.4)|Eout〉 = ηE |Ein〉 + ηRei2θ(x,y)|R〉 + ηLe−i2θ(x,y)|L〉,
whereηE = 1

2(tx + tyeiφ), ηR = 1
2(tx − tyeiφ)〈Ein|L〉 andηL = 1

2(tx − tyeiφ)×
〈Ein|R〉 are the complex field efficiencies and〈α|β〉 denotes the inner product.
Figure 13is a graphic representation of the results of eq.(3.4). It shows that|Eout〉
comprises three polarization orders: the|Ein〉 polarization order, the|R〉 polariza-
tion order and the|L〉 polarization order. The|Ein〉 polarization order maintains
the polarization and phase of the incident beam, whereas the phase of the|R〉 po-
larization order is equal to 2θ(x, y), and the phase of the|L〉 polarization order
is equal to−2θ(x, y). We note that the phase modification of the|R〉 and |L〉
polarization orders results solely from local changes in polarization and is there-
fore geometrical in nature. Using eq.(3.4) we can calculate the Pancharatnam
phase front of the resulting wave. Pancharatnam’s definition for the phase between
two beams of different polarization isϕp(x, y) = arg[〈Eout(0, 0)|Eout(x, y)〉].
For incident|R〉 polarization,ϕp(x, y) = −θ + arctan[cosφ tanθ ] = −θ +
arctan[sin(2χ) tanθ ], whereχ is the ellipticity of the resulting beam. Geometri-
cal calculations show thatϕp is equal to one half the area of the geodesic triangle,
Ω, on the Poincaré sphere defined by the pole|R〉, |Eout(0)〉, and|Eout(θ)〉 (as il-



244 Space-variant polarization manipulation [4, § 3

lustrated infig. 12), and yields the expected Pancharatnam–Berry phase. Similar
results can be obtained for any incident polarization.

A case of special interest isφ = π andtx = ty = 1, for which we find that the
diffraction efficiency is 100%, and that|R〉 polarization is completely converted
into |L〉 polarization. However, despite the fact that the resulting polarization is
space-invariant, the Pancharatnam phase,ϕp = −2θ(x, y), is equal to the desired
geometrical phase,ϕd . This phase corresponds to one half of the area encom-
passed by two geodesic paths between the poles that form an angle of 2θ with
respect to one another, as illustrated infig. 12. This proves that the phase added to
the incident beam is geometrical in nature. Note that PBOEs operate in different
ways on the two helical polarizations.

To conclude, unlike conventional elements, PBOEs are not based on optical
path differences, but on geometrical phase modification resulting from space-
variant polarization manipulation. In Section3.1we will describe the design pro-
cedure for a continuous PBOE along with an example of a blazed grating, and
demonstrate the ability to form more complex phase fronts such as helical beams.
In Section3.2 we will describe the quantized PBOE (QPBOE) using a differ-
ent design method. In Section3.2 we will also demonstrate the ability to form a
polarization-dependent lens using a QPBOE, and will analyze propagation invari-
ant beams formed by QPBOEs. In Section3.3we will demonstrate an interesting
phenomenon – vectorial Talbot beams and vectorial nondiffracting beams gener-
ated by using a PBOE.

3.1. Continuous Pancharatnam–Berry-phase optical elements

PBOEs can be realized by using space-variant sub-wavelength gratings. When the
period of the grating is much smaller than the incident wavelength, the grating acts
as a uniaxial crystal (see Section2). Therefore, by correctly controlling the depth,
structure and orientation of the grating, the desired PBOE can be made. To design
a PBOE, we need to ensure that the direction of the grating stripes,θ(x, y), is
equal to half of the desired geometrical phase, which we denote asϕd(x, y). Next
we define a grating vectorKg = K0(x, y)[cos(ϕd(x, y)/2)x̂+sin(ϕd(x, y)/2)ŷ],
wherex̂ and ŷ are unit vectors in thex andy directions,K0 = 2π/Λ(x, y) is
the spatial frequency of the grating (Λ is the local sub-wavelength period) and
1
2ϕd(x, y) is the space-variant direction of the vector defined so that it is perpen-
dicular to the grating stripes at each point. Next, to ensure the continuity of the
grating, thereby ensuring the continuity of the resulting optical field, we require
∇×Kg = 0, resulting in a differential equation that can be solved to yield the local
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Fig. 14. Geometry of the space-variant sub-wavelength grating as well as the geometrical phases for
incident|R〉 and|L〉 polarizations. (FromBomzon, Biener, Kleiner and Hasman [2002c].)

grating period. The grating functionφg (defined so that∇φg = Kg) is then found
by integratingKg over an arbitrary path (see, for example,Bomzon, Kleiner and
Hasman [2001a]). The realization of the grating function can be done by a Lee-
type binary mask. The formation of a Lee-type binary mask was explained in
Section2.1.2.

An interesting example is introduced in the work ofBomzon, Biener, Kleiner
and Hasman [2002c]. They designed a PBOE that acts as a diffraction grating by
requiring thatϕd = (2π/d)x|mod 2π , whered is the period of the structure. They
realized a Lee-type binary grating describing the grating function,φg. The grating
was fabricated for a CO2 laser radiation with a wavelength of 10.6 µm. Two types
of gratings were formed on a GaAs wafer to yield retardations ofφ = 1

2π and
φ = π . Figure 14illustrates the geometry of the grating, as well as the geomet-
rical phase for incident|L〉 and|R〉 polarization states as calculated by eq.(3.4).
The geometrical phases resemble blazed gratings with opposite blazed directions
for incident|L〉 and|R〉 polarization states, as expected from our previous discus-
sions.

Following their fabrication, the PBOEs were illuminated with circular and lin-
ear polarizations.Figure 15shows the experimental images of the diffracted fields
for the resulting beams, as well as their cross-sections for retardations ofφ = 1

2π

andφ = π , respectively. When the incident polarization is circular, andφ = 1
2π ,

close to 50% of the light is diffracted according to the geometrical phase added
to the|L〉 or |R〉 polarization orders (the direction of diffraction depends on the
incident polarization), whilst the other 50% remains undiffracted in the|Ein〉 po-
larization order as expected from eq.(3.4). Furthermore, the polarization of the
diffracted order has switched helicity as expected. Forφ = π , no energy appears
in the |Ein〉 polarization order, and the diffraction efficiency is close to 100%.
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Fig. 15. Measurements of the transmitted far-field for the sub-wavelength PBOE grating for retarda-
tions ofφ = 1

2π andφ = π respectively, for incident (a) circular left, (b) circular right and (c) linear
polarizations. (FromBomzon, Biener, Kleiner and Hasman [2002c].)

When the incident polarization is linear,|Ein〉 = 2−1/2(|R〉+|L〉), the two helical
components of the beam are subject to different geometrical phases of opposite
sign, and are diffracted to the|R〉 and|L〉 polarization orders in different direc-
tions. Whenφ = 1

2π , the |Ein〉 polarization order maintains the original polar-
ization, in agreement with eq.(3.4), whereas for retardationπ the diffraction is
100% efficient for both circular polarizations, and no energy is observable in the
|Ein〉 polarization order.

The elements proposed here can be utilized for polarization-sensitive beam
splitting and optical switches. In Section3.1.1 we will demonstrate the ability
to form helical wavefronts using continuous PBOEs. The example provided will
demonstrate the ability to form a complex wavefront by using the design proce-
dure for continuous PBOEs described in here.

3.1.1. Formation of helical beams by Pancharatnam–Berry-phase optical
elements

Recent years have witnessed a growing interest in helical beams and their use in
a variety of applications. These include trapping of atoms and macroscopic parti-
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cles (see, for example,Paterson, MacDonald, Arlt, Sibbett, Bryant and Dholakia
[2001] and Allen, Padgett and Babiker [1999]), transfer of orbital angular momen-
tum to macroscopic objects(Mair, Vaziri, Weihs and Zeilinger [2001]), rotational
frequency shifting, the study of optical vortices(Sacks, Rozas and Swartzlander
[1998]), and specialized alignment schemes. Beams with helical (or spiral) wave
fronts are described by complex amplitudesu(r, ω) ∝ exp(−ilω), wherer andω

are the cylindrical coordinates – the radial coordinate and azimuthal angle, respec-
tively – andl is the topological charge of the beams. At the center, the phase has
a screw dislocation, also called a phase singularity, or optical vortex. Typically,
helical beams are formed by manipulating the light after it emerges from a laser
by the superposition of two orthogonal (nonhelical) beams, or by transforming
Gaussian beams into helical beams by means of computer-generated holograms
(seeSacks, Rozas and Swartzlander [1998]), cylindrical lenses or spiral phase el-
ements (SPEs)(Beijersbergen, Coerwinkel, Kristensen and Woerdman [1994]).
Alternatively, a helical beam can be generated inside a laser cavity by inserting
SPEs into the laser cavity(Oron, Davidson, Friesem and Hasman [2001]). The
common approaches to forming SPEs are as refractive or diffractive optical ele-
ments using a milling tool, a single-stage etching process with a gray-scale mask,
or a multistage etching process(Oron, Davidson, Friesem and Hasman [2001]).
In general, such helical beam formations either are cumbersome or suffer from
complicated realization, high aberrations, low efficiency, or large and unstable
setups.

Biener, Niv, Kleiner and Hasman [2002]considered spiral phase elements
based on the space-domain Pancharatnam–Berry phase. They showed that such
elements could be realized using continuous computer-generated space-variant
sub-wavelength dielectric gratings. Moreover, they experimentally demonstrated
SPEs with different topological charges, based on Pancharatnam–Berry phase ma-
nipulation, with an axially symmetric local sub-wavelength groove orientation,
for CO2 laser radiation at a wavelength of 10.6 µm.

To design a PBOE with a spiral geometrical phase, we need to ensure that the
direction of the grating grooves is given byθ(r, ω) = lω/2. By following the
design procedure given in Section3.1the grating function,φg, would result in

(3.5)

φg(r, ω) =
{

(2πr0/Λ0)(r0/r)l/2−1 cos[(l/2 − 1)ω]/[l/2 − 1] for l �= 2,

φg(r, ω) = (2πr0/Λ0) ln(r/r0) for l = 2,

whereΛ0 is the local sub-wavelength period atr = r0. For convenience, we
use polar coordinates in the design procedure instead of the Cartesian coordinates
used in Section3.1. Biener, Niv, Kleiner and Hasman [2002]realized a Lee-type
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Fig. 16. (a) Interferogram measurements of the spiral PBOEs. (b) The corresponding spiral phases for
different topological charges. (FromBiener, Niv, Kleiner and Hasman [2002].)

binary grating describing the grating function, given by eq.(3.5), for l = 1, 2, 3, 4.
The grating was fabricated for CO2 laser radiation with a wavelength of 10.6 µm.
The geometry of the gratings for different topological charges are identical to
those presented infig. 4 in Section2.1.3. The elements were fabricated on 500 µm
thick GaAs wafers using contact photolithography.

Following the fabrication, the spiral PBOEs were illuminated with a right-hand
circularly polarized beam,|R〉, at 10.6 µm wavelength. In order to provide ex-
perimental evidence of the resulting spiral phase modification of their PBOEs,
they used “self-interferogram” measurement using PBOEs with retardation of
φ = 1

2π . For such elements, the transmitted beam comprises two different po-
larization orders:|R〉 polarization state, and|L〉 with phase modification of−lω,
according to eq.(3.4). The near-field intensity distributions of the transmitted
beams followed by a linear polarizer were then measured.Figure 16(a) shows the
interferogram patterns for various spiral PBOEs. The dependence of the inten-
sity on the azimuthal angle is of the formI ∝ 1 + cos(lω), whereas the number
of fringes is equal tol, the topological charge of the beam.Figure 16(b) illus-
trates the phase fronts resulting from the interferometer analysis, indicating spiral
phases with different topological charges.

Figure 17shows the far-field images of the transmitted beams through the spi-
ral PBOEs with retardationφ = π , having various topological charges, as well as
the measured and theoretically calculated cross-sections. The experimental results
were achieved by focusing the beams through a lens. Dark spots can be observed
at the center of the far-field images, providing evidence of the phase singularity in
the center of the helical beams. Excellent agreement between theory and experi-
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Fig. 17. Experimental far-field images as well as their calculated and measured cross-sections for
helical beams withl = 1–4. (FromBiener, Niv, Kleiner and Hasman [2002].)

mental results was found, clearly indicating spiral phases for beams with different
topological charges. In summary, we have demonstrated the formation of a helical
wavefront using a PBOE, thereby proving the ability to form a complex geomet-
rical phase using space-variant polarization manipulation.

3.2. Quantized Pancharatnam–Berry-phase diffractive optics

One of the most successful and viable outgrowths of holography involves dif-
fractive optical elements (DOEs). These diffract light from a generalized grat-
ing structure having nonuniform groove spacing. They can be formed as thin
optical elements that provide unique functions and configurations. High diffrac-
tion efficiencies for DOEs can be obtained with kinoforms that are constructed
as surface-relief gratings on some substrate(d’Auria, Huignard, Roy and Spitz
[1972]). However, in order to achieve a high efficiency, it is necessary resort to
complex fabrication processes that provide the required accuracies for control-
ling the graded shape and depth of the surface grooves. Specifically, in a single
process one photomask with variable optical density is exploited for controlling
the etching rate of the substrate to form the desired graded relief gratings, or mul-
tiple binary photomasks are used so the graded shape is approximated by multi-
level binary steps (see, for example,d’Auria, Huignard, Roy and Spitz [1972] and
Dammann [1970]). Both fabrication processes rely mainly on etching techniques
that are difficult to control accurately. As a result, the shape and depth of the
grooves may differ from those desired, leading to reduced diffraction efficiency
and poor repeatability of performance(Hasman, Davidson and Friesem [1991]).

Researchers have begun to investigate polarization diffraction gratings consist-
ing of spatially rotating polarizers(Gori [1999])or wave plates(Bhandari [1995]).
Bomzon, Biener, Kleiner and Hasman [2002c]demonstrated simple polarization
diffraction gratings based on continuous space-variant computer-generated sub-
wavelength gratings. However, applying constraints on the continuity of the sub-
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wavelength grating leads to a space variation of the local period. As a result, the
elements are restricted in their ability to form a desired complex phase function
in addition to being limited in their physical dimensions. Moreover, the result of
space-varying periodicity complicates the optimization of the photolithographic
process.

In this subsection we present an approach for generating polarization-dependent
DOEs based on quantized Pancharatnam–Berry-phase diffractive optics.Hasman,
Kleiner, Biener and Niv [2003]have shown that such elements can be realized
with a discrete geometrical phase, using a computer-generated space-variant sub-
wavelength dielectric grating. By discretely controlling the local orientation of
such grating, which has uniform periodicity, they were able to form more complex
and sophisticated phase elements. They experimentally demonstrated quantized
Pancharatnam–Berry-phase optical elements (QPBOEs) as a blazed diffraction
grating and a polarization-dependent focusing lens, for the 10.6 µm wavelength
from a CO2 laser. In addition, they showed that high diffraction efficiencies can be
attained by utilizing a single binary computer-generated mask. This enabled the
formation of multipurpose polarization-dependent optical elements that are suit-
able for applications such as optical interconnects, polarization beam splitting,
optical switching and polarization-state measurements.

In the QPBOE approach, the continuous phase functionϕd(x, y) is approx-
imated in discrete steps, leading to the formation of a PBOE with discrete lo-
cal grating orientation. In the scalar approximation, an incident wavefront is
multiplied by the phase function of the quantized phase element described by
exp[iFN(ϕd)], whereϕd is the desired phase andFN(ϕd) is the actual quan-
tized phase. The division of the desired phaseϕd into N equal steps is shown
in fig. 18, where the actual quantized phaseFN(ϕd) is given as a function of
the desired phase. The Fourier expansion of the actual phase front is given by
exp[iFN(ϕd)] = ∑

p Cp exp(ipϕd), whereCp is thepth-order coefficient of the
Fourier expansion. The diffraction efficiency,ηp, of the pth-diffracted order is
given byηp = |Cp|2. Consequently, the diffraction efficiencyηp for the first dif-
fracted order for such an element is related to the number of discrete levelsN by
η1 = [(N/π) sin(π/N)]2. This equation indicates that for 2, 4, 8, and 16 phase
quantization levels, the diffraction efficiency will be 40.5, 81.1, 95.0, and 98.7%,
respectively. The creation of a QPBOE is done by discrete orientation of the local
sub-wavelength grating as illustrated infig. 18.

One of the objectives of the study byHasman, Kleiner, Biener and Niv [2003]
was to design a blazed polarization diffraction grating, i.e., a grating for which all
the diffracted energy is in the first order, when the incident beam is|R〉 polarized.
They designed a QPBOE with retardationφ = π that acted as a diffraction grating
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Fig. 18. Actual quantized phaseF(ϕd) as a function of the desired phaseϕd , as well as the discrete
local grating orientation. Inset: scanning-electron microscope image of a region of the sub-wavelength

structure of the focusing lens. (FromHasman, Kleiner, Biener and Niv [2003].)

by requiring thatϕd = (2π/d)x|mod 2π . This formed the quantized phase func-
tion,FN(ϕd), depicted infig. 18, whered is the period of the diffraction grating. In
order to illustrate the effectiveness of their approach, they realized quantized dif-
fraction gratings with various number of discrete levels,N = 2, 4, 8, 16, 128. The
grating was fabricated for CO2 laser radiation with a wavelength ofλ = 10.6 µm,
with the diffraction grating periodd = 2.5 mm and the sub-wavelength grating
periodΛ = 2 µm. The dimensions of the elements were 30 mm× 3 mm and con-
sisted of 12 grating periods. The magnified geometry of the grating for the case
N = 4, and the predicted geometrical quantized phase distribution, are presented
in fig. 19. The elements were fabricated on 500 µm thick GaAs wafers using a sin-
gle binary mask by means of contact photolithography. The insets infig. 19show
scanning-electron microscopy images of some regions of the fabricated grating
with a number of discrete levels,N = 4.

Following the fabrication, the QPBOEs were illuminated with a right-handed
circularly polarized beam,|R〉, at 10.6 µm wavelength.Figure 19shows the mea-
sured and predicted diffraction efficiency for the first diffracted order for the dif-
ferent QPBOEs. The efficiencies are normalized relative to the total transmitted
intensity for each element. The measured diffraction efficiency forN = 16 was
99±1%, the theoretical value being 98.7%. The excellent agreement between the
experimental results and the predicted efficiency confirms the expected quantized
phase.

In addition, Hasman, Kleiner, Biener and Niv [2003]formed a quantized
Pancharatnam–Berry-phase focusing element for a 10.6 µm wavelength, having a
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Fig. 19. Magnified geometry of the grating forN = 4, as well as the predicted geometrical quantized
phase distribution, and scanning-electron microscopy images of some regions of the grating. Also
shown are the measured (triangles) and predicted (dashed curve) diffraction efficiency as a function of

the number of discrete levels,N . (FromHasman, Kleiner, Biener and Niv [2003].)

quantized spherical phase function ofFN(ϕd) = FN [(2π/λ)(x2 + y2 + f 2)1/2]
with a diameter of 10 mm, a focal length off = 200 mm, the number of discrete
levelsN = 8 and retardationφ = π . Figure 20illustrates the magnified geometry
of a focusing lens based on a QPBOE withN = 4, as well as the predicted quan-
tized geometrical phase. A scanning-electron microscope image of a region on the
sub-wavelength structure that they had fabricated is shown in the inset offig. 18.
A diffraction-limited focused spot size for|L〉 transmitted beam was measured,
while illuminating the element with|R〉 polarization state. The inset infig. 20
shows the image of the focused spot size as well as the measured and theoreti-
cally calculated cross-section. The measured diffraction efficiency was 94.5±1%,
in agreement with the predicted value. The geometrical phase of a PBOE is po-
larization dependent, and this allowed them to experimentally confirm that their
element is a converging lens for incident|R〉 state, and a diverging lens for inci-
dent|L〉 state, as indicated by eq.(3.4). For incident|L〉 state, the measured focal
length wasf = −200 mm as expected, and the measured diffraction efficiency
was identical to the measured incident|R〉 state. Moreover, it is possible to form
a bifocal lens as a PBOE with a retardation phase ofφ = π by illuminating with
a linear polarization beam and inserting a refractive lens following the PBOE.
A trifocal lens can also be created as a PBOE with a retardation phase ofφ = 1

2π ,
resulting in three distinct focuses for|R〉, linear, and|L〉 polarization states. As
can be seen, the introduction of space-varying geometrical phases through QP-
BOEs enables new approaches in the fabrication of polarization-sensitive optical
elements.
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Fig. 20. Illustration of the magnified geometry of a quantized-PBOE focusing lens withN = 4, as
well as the predicted quantized geometrical phase. Inset: the image of the focused spot size as well as
the measured (dots) and theoretically calculated (solid curve) cross-section. (FromHasman, Kleiner,

Biener and Niv [2003].)

3.2.1. Propagation-invariant vectorial beams obtained by use of quantized
Pancharatnam–Berry-phase optical elements

Propagation-invariant scalar fields have been extensively studied, both theoreti-
cally and experimentally, since they were first proposed byDurnin, Miceli and
Eberly [1987]. These fields were employed in applications such as optical tweez-
ers and the transport and guiding of microspheres(Garcés-Chávez, McGloin,
Melville, Sibbett and Dholakia [2002]). While recently there has been consid-
erable theoretical interest in propagation-invariant vectorial beams(Tervo and
Turunen [2001]), experimental studies of such beams have remained somewhat
limited (seePääkkönen, Tervo, Vahimaa, Turunen and Gori [2002] or Bomzon,
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Niv, Biener, Kleiner and Hasman [2002a]). One of the most interesting types of
propagation-invariant vectorial beams is the linearly polarized axially symmet-
ric beam (LPASB) (see, for example,Niv, Biener, Kleiner and Hasman [2003]).
These vectorial beams are characterized by their polarization orientation,ψ(ω) =
mω + ψ0, wherem is the polarization order number,ω is the azimuthal angle of
the polar coordinates, andψ0 is the initial polarization orientation forω = 0.
Methods for forming LPASBs have been discussed extensively in Section2.

In this subsection we propose the formation of propagation-invariant vectorial
Bessel beams by the use of QPBOEs followed by an axicon.Niv, Biener, Kleiner
and Hasman [2004]demonstrated the formation of LPASBs with different po-
larization order numbers by using QPBOEs. They realized the QPBOEs by using
computer-generated space-variant sub-wavelength gratings upon GaAs wafers for
10.6 µm laser radiation. The optical performance of the elements was experimen-
tally evaluated by measuring the polarization distribution of the emerging beam
through the QPBOE, verifying high quality LPASBs. Subsequently, propagation-
invariant vectorial Bessel beams were achieved by inserting an axicon after the
QPBOEs. As a final step, the resulting beams were transmitted through a po-
larizer which produced a unique propagation-invariant scalar beam. This beam
had a propeller-shaped intensity pattern that could be rotated by simply rotating
the polarizer, which makes it suitable for optical tweezers(MacDonald, Paterson,
Volke-Sepulveda, Arlt, Sibbett and Dholakia [2002]).

The Jones vector of a LPASB is given by

(3.6)|Pm〉 = [
exp(imω)|R〉 + exp(−imω)|L〉]/√2,

where the|Pm〉 state represents the linearly polarized beam whose polarization
azimuthal angle is given byψ = mω (let us choose the reference axis so that
ψ = 0 at ω = 0). Propagation of the|Pm〉 state when transmitted through an
axicon can be approximated by the stationary phase method(Pääkkönen, Tervo,
Vahimaa, Turunen and Gori [2002])to yield

|Bm〉 = Kz

{
fa(r)|Pm〉}

∼= (
πγ

√
z/λ

)
exp

(
ik

[(
1 − γ 2/2

)
z + r2/2z − λ/8

])
(3.7)× (−i)mJm(kγ r)|Pm〉,

where Kz is the Fresnel free space propagation operator for propagation dis-
tancez, r is the radial polar coordinate,k is the wave number, andJm is the
mth-order Bessel function of the first kind. In this case, the axicon phase function
is paraxially approximated byfa(r) = exp(−ikγ r), whereγ = β(n − 1) and
β andn are the inclination angle and refractive index of the axicon, respectively.
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This paraxial calculation confirms propagation invariance of the polarization state
as well as the Bessel intensity distribution, except for a linear growth function of
z that can be removed by appodizing the incoming intensity(Davidson, Friesem
and Hasman [1992b]). For this vectorial Bessel beam, the intensity profile is de-
termined bym, the polarization order number of the original LPASB, while the
local polarization state is unchanged by the axicon.

When illuminating a linearly polarized beam upon a QPBOE with retardation
of π radians, the Jones vector of the emerging beam will be

(3.8)|Eout〉 = 1√
2

exp
[
i2θ(r, ω)

]|R〉 + 1√
2

exp
[−i2θ(r, ω)

]|L〉.

According to eq.(3.8), the emerging beam,|Eout〉, comprises two scalar waves of
orthogonal circular polarizations, as expected from eq.(3.4). By selecting a local
sub-wavelength groove orientation such asθ = 1

2mω, eq.(3.8) will be identical
to eq.(3.6), and thus the desired|Pm〉 state will be obtained.

LPASBs with polarization order numbersm = 1, 2, 3 and 4 were formed by
use of QPBOEs, as computer-generated space-variant sub-wavelength gratings.
These elements were illuminated with a linearly polarized plane wave at a wave-
length of 10.6 µm from a CO2 laser. Scanning-electron microscope images of
the elements’ central sections are provided infig. 21(a) for elements with po-
larization order numbersm = 2, 3. The local azimuthal angle was observed by
inserting a polarizer directly behind the QPBOEs. The resulting intensities are
depicted infig. 21(b) for polarization order numbersm = 2, 3. Note that a spe-
cific azimuthal angle returns 2m times within each trip around the beam axis.
Propagation-invariant vectorial beams were obtained by inserting a ZnSe axicon
(β = 3◦, n = 2.4) following the QPBOEs.Figure 21(c) shows the intensities at
8 cm beyond the axicon for beams of polarization order numberm = 2, 3. The
double arrows, arranged along the circumference of the beams, illustrate the local
azimuthal angles. The space-variant polarization state of the propagating beams
was measured at different distances, verifying the vectorial propagation invariance
of the beams.

Finally, the ability to achieve a controlled rotation of the intensity pattern by
inserting a polarizer behind the axicon was demonstrated. It can be shown, again
using stationary phase approximation, that transmittance of propagation-invariant
LPASBs through a polarizer results in an amplitude of∝ Jm(kγ r) cos(mω). This
beam is propagation-invariant with a propeller-shaped intensity pattern given by
I ∝ J 2

m(kγ r)(1 + cos(2mω)). These propeller-shaped intensities are depicted in
fig. 22(a). If the polarizer is rotated by an angle ofω0, the fringes rotate by an
angle ofω0/m. This behavior is demonstrated infig. 22(b), where the polarizer
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Fig. 21. (a) Scanning-electron microscope images of the central parts of the QPBOEs form = 2, 3 po-
larization orders. (b) Experimental intensity distributions, directly after the element, for beams emerg-
ing from the linear polarizer form = 2, 3. (c) Intensity distributions at 8 cm beyond the QPBOE
followed by an axicon form = 2, 3. The strips arranged along the circumference of the beam illus-

trate the local azimuthal angles.

was rotated by 90◦. The dashed and dotted lines indicate the resulting rotation
of the propellers. It can be seen that rotations of 90◦, 45◦, 30◦ and 22.5◦ were
obtained form = 1, 2, 3 and 4, respectively.

3.3. Polarization Talbot self-imaging

The Talbot effect is a well-known interference phenomenon in which coherent
illumination of a periodic structure gives rise to a series of self-images at well-
defined planes(Talbot [1836]). This effect has many applications to fields such as
wavefront sensing(Siegel, Loewenthal and Balmer [2001]), spectrometry(Kung,
Bhatnagar and Miller [2001])and Talbot laser resonators(Wrage, Glas, Fischer,
Leitner, Vysotsky and Napartovich [2000]). Although most studies of the Talbot
effect relate to waves for which the polarization is uniform, several contemporary
papers have dealt with the Talbot effect in fields with space-variant polarization
(seeArrizón, Tepichin, Ortiz-Gutierrez and Lohmann [1996] or Rabal, Furlan
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Fig. 22. (a) Propeller-shaped intensity patterns of the beams emerging from the QPBOEs followed by
an axicon and a polarizer for four polarization orders,m = 1, 2, 3, 4, from left to right. (b) Controlled
rotation of the propeller-shaped intensities by rotating the polarizer by 90◦; the dashed lines and the
dotted curves indicate the rotation angles of the patterns. (FromNiv, Biener, Kleiner and Hasman

[2004].)

and Sicre [1986]). However, the experimental discussions were usually limited
to simple binary anisotropic gratings or other discontinuous polarization distribu-
tions.

Arrizón, Tepichin, Ortiz-Gutierrez and Lohmann [1996]have shown that an
anisotropic grating with two alternate linear perpendicular states of polarization is
transformed by free propagation at one fourth of the Talbot distance into another
grating with a circular polarization state. They formed this anisotropic grating
by superposing two Ronchi-type diffraction gratings with a relative shift of half
of the period, and with different polarization states.Figure 23schematizes the
theoretical space-variant polarization state at the near-field of the grating and at
the quarter of the Talbot distance.

Further, in this section, we demonstrate a Talbot effect involving a PBOE for
which the orientation of the fast-axis varies linearly in thex-direction. We show
that for any incident polarization the resulting field undergoes self-imaging and
fractional Talbot effects involving polarization, intensity and phase.Bomzon, Niv,
Biener, Kleiner and Hasman [2002b]presented a theoretical analysis of the phe-
nomenon and experimentally demonstrated the effect using a continuous space-
variant sub-wavelength dielectric structure designed for CO2 laser radiation at a
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Fig. 23. (a) Ronchi grating with periodd, (b) anisotropic grating with linear polarization, and
(c) anisotropic grating with circular polarization state, observed at the distance1

4ZT behind the grat-
ing in (b). (FromArrizón, Tepichin, Ortiz-Gutierrez and Lohmann [1996].)

wavelength of 10.6 µm. Moreover, when a circularly polarized beam is incident
upon the proposed PBOE a one-dimensional nondiffracting effect occurs, thus
the beam emerging from the PBOE conserves its space-varying polarization and
intensity as it propagates.

Let us assume a PBOE withtx = ty = 1 and local grating orientation function
θ = πx/d|mod π , whered is the rotation period of the space-variant wave plates’
fast axis. In this case the emerging field can be calculated by using eq.(3.4). To
prove that the emerging field,|Eout〉, undergoes self-imaging, we calculate the
propagation of each of the diffracted orders using the Fresnel approximation (see,
for example,Goodman [1996]) to yield,

∣∣Eout(x, z)
〉 =

{
cos

φ

2
|Ein〉 − i sin

φ

2

[
ηL|L〉 exp

(
− i2πx

d
− iπλz

d2

)

(3.9)+ ηR|R〉 exp

(
i2πx

d
− iπλz

d2

)]}
exp

(
i2πz

λ

)
,

from which we find that|Eout(x, z = 0)〉 = |Eout(x, z = mZT )〉, wherez = 0
corresponds to the plane just after the grating,ZT = 2d2/λ is the Talbot dis-
tance, andm is an integer. This proves that|Eout(x, z = 0)〉 is reconstructed at the
Talbot planes. Further analysis shows that|Eout(x, z = 1

2ZT )〉 = |Eout(x + 1
2d,

z = 0)〉. Thus, at half the Talbot distance the field is shifted in thex-direction by
half a period compared to the field atz = 0, demonstrating a fractional Talbot ef-
fect. We can expect additional interesting effects at other fractional Talbot planes.
Figure 24presents the concept of the vectorial Talbot effect along with the cal-
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Fig. 24. Diffraction from the PBOE. The Talbot effect occurs in the region where the diffracted polar-
ization orders overlap (the striped region). The polarization state at planesz = 0, 1

4ZT , 1
2ZT andZT

are also depicted for linearly polarized incident beam and retardation phase of the grating,φ = 1
2π .

The planes are symbolized by the dashed lines in the striped region.

culated space-variant polarization state at the planesz = 0, 1
4ZT , 1

2ZT andZT ,
for a linearly polarized incident beam, and using grating with retardation phase
φ = 1

2π .
Bomzon, Niv, Biener, Kleiner and Hasman [2002b]have used a grating similar

to that one presented in Section3.1. They illuminated the elements with linearly
polarized light and measured the Stokes parameters at various planes along the
z-axis using the four-measurement technique (see Section4 or Collett [1993]for
a detailed discussion of the Stokes parameters). The experimental results agree
with the predictions. Atz = 0 just after the grating, the polarization varies pe-
riodically and continuously in thex-direction from linear polarization to nearly
circular polarization, and the intensity is constant. This field is reconstructed at
z = ZT , thereby demonstrating the Talbot effect. At the planez = 1

2ZT a shifted
field can be observed as predicted by eq.(3.9). A fractional Talbot effect is also
demonstrated atz = 1

4ZT . At this plane a clear periodic variation in intensity is
observable. Although the polarization at this plane is space varying, the ellipticity
is zero and the beam is linearly polarized at all points.

A case of special interest occurs when PBOE is illuminated with off-axis cir-
cularly polarized light at a small incident angle ofζ ≈ λ/2d. Using eqs.(3.4)
and (3.9)we find that the resulting field whenφ = 1

2π is∣∣Eout(x, z)
〉

=
[
−cos

(
2πx

d
+ π

4

)
x̂ + sin

(
2πx
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+ π

4

)
ŷ
]

exp

[
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(
2πz

λ
+ π

4

)]
,
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Fig. 25. Illustration of a PBOE for forming propagation-invariant fields. The insets show (top) the
geometry of the PBOE, as well as (bottom) the vector-field formed by it. (FromBomzon, Niv, Biener,

Kleiner and Hasman [2002a].)

where x̂ and ŷ are Cartesian unit vectors transverse to the direction of propa-
gation. The resultant beam has uniform intensity and a constant space-variant
polarization that is retained throughout its propagation. The beam is essentially
a one-dimensional vectorial nondiffracting beam, analogous to a scalar nondif-
fracting cosine beam.Bomzon, Niv, Biener, Kleiner and Hasman [2002a]formed
a vectorial nondiffracting beam by using a PBOE based on computer-generated
space-variant sub-wavelength metal-stripe grating.Figure 25illustrates a non-
diffracting periodically space-variant polarization beam by using sub-wavelength
gratings withφ = 1

2π . The transmitted beam comprises two polarization orders
which travel in different directions. The interference of the two polarization or-
ders in the region where they overlap results in a propagation-invariant beam. The
uniqueness of the vectorial solution lies in its space-varying polarization and uni-
form intensity, which makes it better suited for applications such as metrology
and three-dimensional scanning.

§ 4. Applications of space-variant polarization manipulation

Space-variant polarization-state manipulation has been found useful in a wide
range of research fields.Quabis, Dorn, Eberler, Glöckl and Leuchs [2000]showed
theoretically that the focal area is reduced when a radially polarized instead of a
linearly polarized light annulus is used. This reduction of the focal area can be
utilized for improving the spatial resolution in imaging systems.Liu, Cline and
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He [1999]used a radially polarized, high-power, Gaussian CO2 laser beam in-
teracting with a high-quality electron beam located at the Brookhaven accelerator
test facility, in order to perform laser acceleration in vacuum. They noted that a ra-
dially polarized, Gaussian laser beam can produce a stronger longitudinal electric
field than a linearly polarized one.Niziev and Nesterov [1999]investigated the
influence of the beam’s polarization on laser cutting efficiency. They concluded
that in the case of cutting metals with a large ratio of sheet thickness to width of
cut, the laser cutting efficiency for radially polarized beams is 1.5–2 times higher
than for planep-polarization (TM-polarization) and circularly polarized beams.

In this section we elaborate on several applications using space-variant po-
larization manipulation performed by polarization-dependent optical elements
such as polarization gratings. A polarization grating is defined, according toGori
[1999], as a transparency in which the polarization of the incident wave is changed
periodically. In Section4.1 we focus on polarization measurements, including
near-field polarimetry and far-field polarimetry by use of spatially varying polar-
ization manipulation and imaging polarimetry. In Section4.2we review depolar-
ization methods with special attention to depolarizers based on space-variant po-
larization manipulation. Section4.3 discusses the application of polarization en-
cryption, emphasizing geometrical phase encryption, and polarization encoding,
as well as optical computing as an example of an interesting encoding application.
Section4.4 describes the possibility of spatial control of polarization-dependent
emissivity using sub-wavelength-structured elements.

4.1. Polarization measurements

In this subsection we discuss polarization measurements performed by space-
variant polarization-state manipulation. Optical polarization measurement has
been widely used for a wide range of applications such as ellipsometry(Lee, Koh
and Collins [2000]), bio-imaging(Sankaran, Everett, Maitland and Walsh [1999]),
imaging polarimetry(Nordin, Meier, Deguzman and Jones [1999]), and optical
communications(Chou, Fini and Haus [2001]). A commonly used method is to
measure the time-dependent signal once the beam has been transmitted through
a photoelastic modulator (seeJellison [1987]) or a rotating quarter-wave plate
(QWP) followed by a polarizer–analyzer (see, for example,Collett [1993]). The
polarization state of the beam can be derived by Fourier analysis of the detected
signal. An increasing demand for faster and simpler methods has led to the devel-
opment of the simultaneous four-channel ellipsometer(Azzam [1987]). Oka and
Kato [1999] reported on a method for spectroscopic measurement of the spec-
trally resolved polarization state. In their scheme, the light is passed successively



262 Space-variant polarization manipulation [4, § 4

through a pair of thick birefringent retarders and a polarizer–analyzer. The light
emerging from the polarizer–analyzer is then fed into a spectrometer followed by
a photodetector. Finally, the signal obtained by the photodetector is analyzed by
a computer. The light that is being measured is assumed to have a broad-band
spectrum.

4.1.1. Near-field polarimetry

Bomzon, Biener, Kleiner and Hasman [2002a]presented a Fourier-transform
polarimeter that is a space-domain analogue to the rotating QWP polarime-
ter method using a continuous space-variant dielectric sub-wavelength grating.
Biener, Niv, Kleiner and Hasman [2003b] and Hasman, Biener, Kleiner and
Niv [2003] later proposed a Fourier-transform polarimeter using discrete space-
variant sub-wavelength dielectric gratings. The grating of this type of element
is divided into equal-sized zones. The sub-wavelength grooves are of uniform
orientation and period within each zone and are rotated at discrete angles from
zone to zone. The measurements for this type of polarimeter are performed in
the near field, therefore this polarimeter is referred to as a near-field polarime-
ter. A Fourier-transform polarimeter using discrete space-variant sub-wavelength
dielectric gratings is less sensitive to statistical errors because of the increased
number of measurements, it is suitable for real-time applications, and it can be
used in compact configurations. In addition, it is possible to integrate this po-
larimeter on a two-dimensional detector array for lab-on-chip applications. The
high throughput achieved and the low cost make it useful as a commercial po-
larimeter for biosensing.

The concept of near-field polarimetry based on sub-wavelength gratings is pre-
sented infig. 26. Uniformly polarized light is incident upon a polarization- sen-
sitive medium (e.g., biological tissue, an optical fiber, a wave plate, etc.) and
then transmitted through a space-variant sub-wavelength grating that acts as a
space-variant wave plate, followed by a polarizer. The space-variant wave-plate
element is a particular case of polarization grating. The resulting intensity distri-
bution is detected by a camera and captured for further analysis. The emerging
intensity distribution is uniquely related to the polarization state of the incoming
beam. This dependence is given by a spatial Fourier-series analysis, wherein the
resulting Fourier coefficients completely determine the polarization state of the
incoming beam.

The polarization state within the Stokes representation is described by a Stokes
vectorS = (S0, S1, S2, S3)

T, whereS0 is the intensity of the beam, andS1, S2,
S3 represent the polarization state. In general,S2

0 � S2
1 + S2

2 + S2
3, where the

equality holds for fully polarized beams. The degree of polarization (DOP) of a
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Fig. 26. Schematic presentation of near-field spatial Fourier-transform polarimetry based on a discrete
space-variant sub-wavelength dielectric grating followed by a sub-wavelength metal polarizer. Also
shown is the measured intensity distribution captured in a single camera frame when the fast axis of
the rotating QWP was at an angle of 20◦. (We used a CO2 laser that emitted linearly polarized light
and replaced the polarization-sensitive medium with a rotating QWP.) (FromHasman, Biener, Kleiner

and Niv [2003].)

beam is defined by DOP= (S2
1 +S2

2 +S2
3)1/2/S0. The polarization state emerging

from an optical system (e.g., wave plates, polarizers, etc.) is linearly related to the
incoming polarization state throughS′ = MS, whereM is a 4-by-4 real Mueller
matrix of the system andS and S′ are the Stokes vectors of the incoming and
outgoing polarization states, respectively (seeCollett [1993]for further reading).
The optical system under consideration consists of a polarization grating followed
by a polarizer. This composite element can be described in Cartesian coordinates
by a Mueller matrix

(4.1)M(θ) = MP MR(−θ)MWP(φ)MR(θ),

whereθ represents the discrete rotation angle of the retarder (e.g., sub-wavelength
dielectric grating) as a function of its location along thex-axis,

(4.2)MR(θ) =




1 0 0 0
0 cos 2θ sin 2θ 0
0 − sin 2θ cos 2θ 0
0 0 0 1
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is the Mueller matrix that represents rotation of the axis frame by angleθ(x),

(4.3)MWP(φ) = 1

2




t2
x + t2

y t2
x − t2

y 0 0
t2
x − t2

y t2
x + t2

y 0 0
0 0 2tx ty cosφ −2tx ty sinφ

0 0 2tx ty sinφ 2tx ty cosφ




is the Mueller matrix of a transversally uniform retarder, with retardationφ and
real transmission coefficients for two eigen-polarizationstx andty , and

(4.4)MP = 1

2




1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0




is the Mueller matrix of an ideal horizontal polarizer.
The outgoing intensity can be related to the incoming polarization state of the

beam by calculating the Mueller matrix given above and using the linear relation
between the incoming and the outgoing Stokes vectors, yielding

S′
0(x) = 1

4

{
AS0 + 1

2
(A + C)S1 + B(S1 + S0) cos 2θ(x)

+ (BS2 − DS3) sin 2θ(x)

(4.5)+ 1

2
(A − C)

[
S1 cos 4θ(x) + S2 sin 4θ(x)

]}
,

whereA = t2
x + t2

y , B = t2
x − t2

y , C = 2tx ty cosφ, andD = 2tx ty sinφ. Equa-
tion (4.5) describes the intensity of the outgoing beam as a truncated Fourier se-
ries with coefficients that depend on the Stokes parameters of the incident beam.
S0–S3 would be extracted using Fourier analysis (for a detailed discussion see
Biener, Niv, Kleiner and Hasman [2003b]). We note that the grating coefficients
A, B, C andD should be determined by direct measurement of the polarization
grating parameters,tx , ty , andφ, or by performing a suitable calibration process.

Biener, Niv, Kleiner and Hasman [2003b]fabricated a discrete space-variant
sub-wavelength grating element for CO2 laser radiation of 10.6 µm wavelength.
The dimensions of the element were 30 mm× 3 mm and consisted of 12 pe-
riods of d. They used the setup shown infig. 26 to demonstrate experimentally
the ability of their method to measure the polarization state for fully and partially
polarized light (seefigs. 27 and 28). The ability of their device to conduct polar-
ization measurements of fully polarized light was tested by using a CO2 laser that
emitted linearly polarized light and replacing the polarization-sensitive medium
with a rotating QWP.Figure 27shows the experimental and theoretical azimuthal
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Fig. 27. Measured (circles) and predicted (solid curves) values for azimuthal and elipticity angles as a
function of orientation of the QWP. (FromHasman, Biener, Kleiner and Niv [2003].)

Fig. 28. Calculated (solid curve) and measured (circles) DOP as a function of the intensity ratio of two
independent lasers having orthogonal linear polarization states, as used in the setup depicted in the top
inset. The bottom inset shows calculated (solid curves) and measured (circles) intensity cross-sections
for two extremes,I1 = I2 (DOP = 0.059) andI2 = 0 (DOP = 0.975). (FromHasman, Biener,

Kleiner and Niv [2003].)

angle,ψ , and the ellipticityχ , calculated from the measured data, by use of the
relations tan(2ψ) = S2/S1 and sin(2χ) = S3/S0. The partially polarized beam
was constructed by combining two CO2 lasers with orthogonal polarization (the
setup is shown in the inset offig. 28). Figure 28shows the measured and pre-
dicted DOP as a function of the intensity ratio,I1/I2, of the combined lasers. The
inset shows the experimental intensity distributions for two extreme cases. The
first is for equal intensities (I1 = I2), in which the measured DOP is 0.059, indi-
cating unpolarized light. The second is for illumination by a single laser only (i.e.,
I2 = 0), in which the measured DOP is 0.975, indicating fully polarized light.
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Fig. 29. Experimental interferograms generated by the OBPI filter offig. 1. Alongside each inter-
ference pattern is the associated incident Stokes vector. A 50 µm scale bar is shown in the lower

right-hand corner of each image. (FromVan Delden [2003].)

Van Delden [2003]proposed an interferometric approach to polarization mea-
surement by the use of an ortho-Babinet, polarization-interrogating filter (OBPI).
His polarimeter is composed of four birefringent wedges and a linear polarizer
comprising an OBPI filter assembly. Operationally, the OBPI filter is character-
ized by a three-stage optical system consisting of two modified Babinet com-
pensators (i.e., spatially varying linear retarders) and a linear polarizer. The most
important feature of the resulting interferogram is that a unique pattern is gener-
ated for any polarization state of the incident beam.Figure 29shows experimental
interferograms produced by the assembled OBPI filter with varying conditions of
the polarized Koehler illumination.

4.1.2. Far-field polarimetry

Gori [1999]proposed measuring the Stokes parameters by means of a polarization
grating comprised of a linear polarizer whose orientation varied periodically along
a line. His analysis was done using Jones calculus. A more general case of polar-
ization grating of a periodically rotating wave plate analyzed using Jones calculus
was presented in Section3. The analysis of a beam emerging from such a polar-
ization grating is given by eq.(3.4). As noted in Section3, the beam emerging
from a polarization grating comprises three polarization orders. The first main-
tains the original polarization state and phase of the incident beam, the second
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is right-handed circularly polarized and has a phase modification of 2θ(x), and
the third has a polarization direction and phase modification opposite to those of
the former polarization order. Gori assumedθ(x) to be a linear function ofx, in
which case the second and third polarization orders become 1 and−1 diffraction
orders, respectively, and the first polarization order becomes the zeroth diffraction
order. Gori showed that the decomposition performed by the polarization grating
can be used for evaluating the Stokes parameters of a light beam. Suppose that
the beam to be analyzed is sent through the polarization grating followed by a
polarizer. At a suitable distance from the grating the three diffraction orders are
spatially separated. By setting the polarizer orientation angle at the two values of
0◦ and 45◦ and measuring the corresponding intensities of the undiffracted-order
beam together with the intensities of the 1 and−1 diffracted beams (at any angle
of the polarizer) the Stokes parameters of the beam can be obtained.Figure 30
depicts the far-field intensities measured for a beam being passed through the po-
larization grating, a lens and a polarizer oriented at 0◦ and 45◦. The polarization
grating, which was realized by dielectric space-variant sub-wavelength gratings,
was illuminated by a CO2 laser at the wavelength ofλ = 10.6 µm. The inset in
fig. 30(a) shows a scanning-electron microscopy image of a region on the sub-
wavelength structure on the GaAs wafer. The measurements were taken in the
focal plane of the lens as illustrated in the inset offig. 30(b). The polarization
state of the measured incident beam was generated by transmitting a linearly po-
larized beam oriented at 0◦ through a QWP with its fast axis oriented at 20◦ with

Fig. 30. Cross-section of the measured intensity in the Fourier plane of a beam emerging from a
spatially rotating QWP polarimeter followed by a polarizer oriented at (a) 0◦ and (b) 45◦. The polar-
ization of the incident beam was generated by illuminating a QWP oriented at 20◦ with a horizontal
linear polarized CO2 laser beam at the wavelength ofλ = 10.6 µm. The inset depicted in (b) de-
scribes the concept of far-field polarimetry. The far-field polarimeter contains a discrete space-variant
sub-wavelength dielectric polarization grating (D), a lens (L) and a polarizer (P). The inset in (a) is a

scanning-electron microscope image of a region of the sub-wavelength structure.
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respect to thex-axis. The measured azimuthal angle,ψ , and the ellipticity,χ , of
the incident beam were 16◦ and 20.7◦, respectively, which is in good agreement
with the predicted results.

4.1.3. Imaging polarimetry

A more general application of polarization measurement is imaging polarimetry,
which is being investigated as a means to extend the capabilities of infrared (IR)
systems beyond conventional amplitude imaging. For example, some polarization
matrices used in imaging polarimetry offer the capability to highlight or suppress
different materials in a scene, or objects in different orientations. As a result,
imaging polarimetry offers a means to extend the capabilities of conventional
IR imaging and to provide new imaging modalities.Nordin, Meier, Deguzman
and Jones [1999] and Guo and Brady [2000]proposed a micropolarizer array for
IR imaging polarimetry. The polarization-imaging camera proposed byNordin,
Meier, Deguzman and Jones [1999]consisted of a 128× 128 array of unit cells,
each of which was composed of a 2× 2 array of sub-wavelength metal strips
in different orientations that acts as a 2× 2 array of micropolarizers.Figure 31
depicts a unit cell within the micropolarizer array that contains two upper microp-
olarizers oriented at 90◦, and two lower micropolarizers oriented at 0◦ and 45◦.
The unit cell illustrated infig. 31 is considered to comprise a single image pixel.
Oka and Kaneko [2003]proposed an alternative design for imaging polarimetry

Fig. 31. Schematic diagram of unit cell containing a 2× 2 array of micropolarizers. (FromNordin,
Meier, Deguzman and Jones [1999].)
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Fig. 32. Configuration of the block of polarimetric devices. (FromOka and Kaneko [2003].)

as illustrated infig. 32. Their instrument consisted of two pairs of birefringent
wedge prisms cemented together and a polarizer–analyzer.

4.2. Spatial polarization scrambling

In this subsection we present methods for depolarizing light, based on space-
domain polarization-state scrambling. Depolarizers are optical elements that re-
duce the degree of polarization (DOP) of a beam, independent of its incident po-
larization state. These components are essential for removing undesired polariza-
tion sensitivity in optical systems, such as for long-haul transmission systems that
use erbium-doped fiber amplifiers(Mazurczyk and Zyskind [1994]), and for opti-
cal measurement equipment(Kersey, Marrone and Dandridge [1990]). Totally un-
polarized light is described by a Stokes vector of the form〈S〉 = (〈S0〉, 0, 0, 0)T,
where the angle brackets denote the average value over the space domain. There-
fore, for a uniform incident beam, the components of the Mueller matrix of a
perfect depolarizer,〈Mdep〉, are given by〈mdep

ij 〉 = 0, except for〈mdep
11 〉 = 1.

Stokes–Mueller calculus has been described above, in Section4.1.
Several approaches for depolarizing light based on the scrambling of the po-

larization state in the time or wavelength domains have been suggested and ex-
perimentally demonstrated.Lyot [1928] was the first to propose an approach for
reducing the DOP of a beam. His method relies on polarization scrambling over
the wavelength.Billings [1951] and Heismann and Tokuda [1995]proposed the
possibility of depolarizing monochromatic beams using a temporally varying re-
tarder.

McGuire and Chipman [1990]suggested a crystal-based depolarizer for scram-
bling the polarization state in the space domain. They suggested using two iden-
tical Babinet compensators oriented at 45◦ to each other. Each Babinet compen-
sator, in turn, consisted of two prisms cemented together, one with the fast axis
horizontal and the other with the fast axis vertical.Figure 33shows the concept
of the depolarizer using double Babinet compensators. Spatial polarization-state
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Fig. 33. Construction of the dual Babinet compensator pseudodepolarizer. H and V denote birefringent
material with the fast axis horizontal and vertical, respectively. (FromMcGuire and Chipman [1990].)

scramblers are compact, passive components, and suitable for use in real-time
applications and with monochromatic laser radiation.

Biener, Niv, Kleiner and Hasman [2003a]proposed a complete depolarizer
based on space-domain polarization-state scrambling performed by cascaded,
computer-generated, space-variant sub-wavelength dielectric gratings, as shown
in fig. 34(a). The first is a space-variant quarter-wave plate (QWP) with a rotation

Fig. 34. (a) Schematic presentation of our concept for depolarizing over the space domain. The insets
illustrate the geometry of the sub-wavelength gratings. (b) SEM image of a typical cross-section of

the grating profile of the QWP. (FromBiener, Niv, Kleiner and Hasman [2003b].)
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Fig. 35. Illustration of the outgoing beam’s polarization state when the polarization of the incoming
beam is (a) vertically linear, (b) horizontally linear, (c) linear at 45◦ or (d) circular. The spheres show
the trajectories of the outgoing polarization states onto the Poincaré sphere. (FromBiener, Niv, Kleiner

and Hasman [2003b].)

period ofd1 = 1
4d; the second is a space-variant half-wave plate (HWP) with a

rotation period ofd2 = d. The Mueller matrix of a wave plate of which the fast
axis rotates periodically with respect to the position along thex-axis is described
in Section4.1with θ = πx/d, whered is the rotation period. Calculating the av-
erage value along thex-axis as〈mij 〉 = (2/d)

∫ d/2
0 mij (x) dx yields the Mueller

matrix of an ideal depolarizer. The depolarization effect is achieved by spatially
scrambling the beam’s polarization state.Figure 35illustrates the local outgoing
polarization states for different incoming beams, along with an illustration of the
local polarization state as a trajectory on a Poincaré sphere (seeBrosseau [1998]
for a detailed explanation on Poincaré spheres). As shown infig. 35, the resulting
space-variant polarization state includes polarization ellipses of different orien-
tation and ellipticity. These polarization ellipses demonstrate the principle of the
scrambling procedure.

Biener, Niv, Kleiner and Hasman [2003a]realized Lee-type gratings, which
describe their grating functions. The first grating was a spatially rotating QWP
with d1 = 2.5 mm; the second was a spatially rotating HWP withd2 = 10 mm.
The elements were fabricated on a GaAs wafer.Figure 34(b) shows a scanning-
electron microscope image of a typical cross-section of the grating profile of the
QWP at a period of about 2 µm. The measured phase retardations of the elements
were 0.46π and 0.96π for the appropriate QWP and HWP, respectively. The re-
tardation of the elements was measured for 10.6 µm wavelength radiation. These
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Fig. 36. Measured and predicted DOP as a function of the orientation of the QWP, through which the
incident beam has been transmitted. (FromBiener, Niv, Kleiner and Hasman [2003b].)

results are in good agreement with the theoretical predictions achieved by rigor-
ous coupled-wave analysis, utilizing the measured profiles of the gratings.

Subsequently, their depolarizer was experimentally tested using linearly polar-
ized CO2 laser radiation at a wavelength of 10.6 µm. They illuminated a rotating
QWP in order to manipulate the polarization state of the beam incident on the
depolarizer. The polarization state of the beam emerging from the depolarizer
was measured using the four-measurement technique (seeCollett [1993]). Each
measurement was obtained by summing the intensity over thex-axis over the in-
terval 0 < x < 1

2d2. Figure 36shows the measured and predicted DOP as a
function of the orientation of the QWP. The experimental DOP attained was less
than 0.16.

When the polarization state of the incident beam is known, the use of a sim-
ple pseudo-depolarizer is sufficient.Biener, Niv, Kleiner and Hasman [2003a]
have demonstrated that a single, spatially rotating QWP or HWP based on space-
variant sub-wavelength dielectric polarization gratings can completely depolar-
ize incident light with circular and linear polarization states, respectively. They
used the same sub-wavelength polarization grating previously described for the
cascaded gratings. The experimentally measured DOPs for the QWP and HWP
scramblers were 0.021 and 0.075, respectively.

4.3. Polarization encryption and polarization encoding

In this subsection we present several concepts for polarization encryption as well
as numerous methods for the polarization encoding of data by using space-variant
polarization-state manipulation. In the past few years there has been increasing
interest in data security and a growing need for improved methods for encrypting
data. One of the processes that has been extensively investigated is the optical
encryption technique. Different optical encryption schemes have been suggested,
for example schemes involving pure amplitude image encryption suggested by
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Fig. 37. Schematic diagram showing (a) the generic system architecture; and (b) the polarization
encoding and decoding geometry in greater detail. The system operates as a direct phase-only mapping
of the encrypted mask and decrypting key. A pair of crossed polarizers (P1 and P2) are used to generate
an intensity pattern at the output. The polarization directions of the various components are indicated,
the decrypting key (D) and encrypted mask (E) are aligned so that they act to phase-shift only one

orthogonal component of the polarized wavefront (a). (FromMogensen and Glückstad [2000].)

Unnikrishnan, Joseph and Singh [1998]. Other encryption schemes involving
phase-only images were explored byTowghi, Javidi and Luo [1999]in order to
improve the visibility of the decrypted image. Both methods use double-random
phase encryption, a technique first presented byRefregier and Javidi [1995].

Polarization encryption has been investigated by several groups, each employ-
ing slightly different concepts. Polarization encryption provides additional flex-
ibility in the key encryption design by adding polarization-state manipulation to
the conventional phase and amplitude manipulation used in earlier methods. This
feature is advantageous as it makes the polarization encryption method more
secure.Mogensen and Glückstad [2000]proposed polarization encryption us-
ing spatially modulated retardation. Their optical decryption system is shown
schematically infig. 37(a). The polarization procedure for encoding and decoding
the phase information is shown in greater detail infig. 37(b). A laser beam linearly
polarized along the 45◦ axis is aligned with the polarizer P1. The encrypted phase
mask (E) and the decrypting phase key (D) are aligned such that their fast axes are
parallel to they-axis. A second polarizer (P2) at an angle of 135◦, crossed with
respect to the first, is used to produce an intensity read-out of the phase-shifting
information. The phase masks were implemented using a pair of parallel-aligned
liquid-crystal spatial light modulators supplied by Hamamatsu Photonics.
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Fig. 38. Schematic of a system for polarization encryption; P1, input polarizer; P2, output polarizer;
L1, L2, imaging lenses. (FromUnnikrishnan, Pohit and Singh [2000].)

A second scheme for polarization encryption was proposed byUnnikrishnan,
Pohit and Singh [2000]using a ferroelectric liquid-crystal spatial light modulator.
Their encryption is done by an exclusive-OR (XOR) operation between the image
and a random phase code (a key used to encrypt the data). The XOR operation is
carried out in the polarization domain of coherent light by using two ferroelectric
liquid-crystal spatial light modulators. The decryption of the encrypted data is
done by a second XOR operation between the encrypted image and the key.Fig-
ure 38shows a schematic representation of the concept of polarization encryption
using ferroelectric liquid-crystal spatial light modulator.

A different recording method for polarization encryption was suggested byTan,
Matoba, Okada-Shudo, Ide, Shimura and Kuroda [2001]using bacteriorhodopsin
(a polarization recording medium). This method uses interference to record the
spatially scrambled polarization field onto a medium that is sensitive to the elec-
tromagnetic field but not the intensity.Figure 39shows the experimental setup
using a polarization mask formed by polarizer films, a spatial light modulator
for encrypting the polarization data, and a polarization recording medium (bac-
teriorhodopsin). The experimental setup shown infig. 39 includes the decryption
process.

A concept of double-random polarization encryption was suggested byMatoba
and Javidi [2004]. Their method includes one polarization scrambling mask lo-
cated at the image plane and a second polarization scrambling mask located at
the Fourier plane. This is considered to be a more secure method for encrypting
data due to the use of two scrambling keys.Figure 40shows the schematic of the
proposed double-random polarization encryption technique. A different concept
of polarization encryption involving geometrical phase was proposed byBiener,
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Fig. 39. Experimental setup for encryption using bacteriorhodopsin: SP, spatial filter; M, mirror; BS,
beam splitter; P, polarizer; L, lens; CCD, CCD camera; RMM, random modulation mask; BR, bac-
teriorhodopsin; PC, personal computer. (FromTan, Matoba, Okada-Shudo, Ide, Shimura and Kuroda

[2001].)

Fig. 40. Schematic of the double-random polarization encryption technique:f , focal length. (From
Matoba and Javidi [2004].)

Niv, Kleiner and Hasman [2005]. The connection between geometrical phase and
spatially varying polarization state manipulation was discussed in Section3.

The concept of geometrical phase encryption involves a PBOE that encodes the
image intensity added by a random key function. (The term PBOE is explained
in detail in Section3.) The proposed PBOE, which is a space-variant rotating
wave plate, imprints the image intensity plus the random key function in the local
orientation of the wave plate’s fast axes. Let us assume that a PBOE with a space-
varying wave-plate orientation function ofθi(x, y) encodes the primary image
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Fig. 41. (a) Schematic representation of the concept of geometrical phase encryption. (b) Primary
image intensity to be encrypted. (c) Encrypting PBOE wave plate’s orientation function,θi + θk , in
grayscale. (d) Sub-wavelength grating mask of the PBOE. (e) Polarization state of the beam emerging
from the PBOE. (d) and (e) are taken from a small region near the eyebrow of Einstein, which is

depicted in (b).

of young Einstein, depicted infig. 41(b). In order to further encrypt the encoded
primary image information embedded in the PBOE, we add a random rotation
function, θk(x, y), to the space-varying wave plates’ orientation. This random
rotation factor serves as an encryption/decryption key. The total orientation func-
tion of the wave plates, comprising the encrypted PBOE, is shown in grayscale
in fig. 41(c). Decryption is performed by illuminating the encrypted element with
circularly polarized light and then analyzing the emerging Stokes parameters with
the appropriate key to retrieve the primary image. The scheme for this process is
shown infig. 41(a).

The beam emerging from a PBOE, which is a rotating QWP, illuminated by
|R〉-polarized light comprises two polarization orders, as can be seen in eq.(3.4).
The first maintains the original polarization state and phase of the incident beam,
and the second is left-hand circularly polarized,|L〉, and has a phase modification
of −2θ(x, y). The phase added to the|L〉-polarized beam, which is geometrical in
nature, equals−(ϕi + ϕk), whereϕi = 2θi andϕk = 2θk denote the geometrical
phase added by the encoded primary image’s intensity and the encoded key re-
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Fig. 42. (a–c) Three intensity pictures generated by the decryption process for the polarizer in the
different orientations: (a) 0◦, (b) 45◦ and (c) 90◦. The arrows indicate the orientation angle of the
polarizer. (d) Decrypted image achieved by the decryption process using the intensities shown in (a–c).

spectively.Figure 41(e) depicts the space-variant polarization direction emerging
from a PBOE with optical parameters oftx = ty = 1 andφ = 1

2π . The emerg-
ing field, which is a result of the vectorial self-interference, is a space-varying
polarized field. As can be seen, the orientation of the arrows is random. In order
to retrieve the primary image’s geometrical phase we need to measure the Stokes
parameters of the emerging beam. The Stokes parameters are measured by using
a polarizer oriented in three different orientations. These measurements have been
discussed extensively byBiener, Niv, Kleiner and Hasman [2005]. By using the
measured Stokes parameters and by applying the geometrical phase key, we can
retrieve the phase function of the primary image. For the realization of the optical
concept, we can implement a method first discussed in Section2 for space-variant
polarization-state manipulations using computer-generated sub-wavelength struc-
tures.Figure 41(d) is a magnified illustration of the sub-wavelength grating mask
of the encrypted element.

A computer simulation was performed to test the geometrical phase encryption.
Figures 42(a)–42(c)show the three intensity pictures obtained by measuring the
encrypted image after being transmitted through a simulated polarizer oriented at
three different orientations. The decrypted image shown infig. 42(d) was gener-
ated by calculating the Stokes parameters when applying the simulated intensities,
and by applying the correct geometrical phase key,ϕk.

Polarization encryption can be considered to be a specialized form of polariza-
tion encoding, which is a general application of space-variant polarization-state
manipulation. There are several methods for encoding the space-variant polar-
ization state of a vectorial field.Eriksen, Mogensen and Glückstad [2001] and
Davis, McNamara, Cottrell and Sonehara [2000]proposed the use of dynamic
modulation of the space-variant polarization state by use of spatial light modula-
tors.Figure 43depicts the concept of polarization encoding by using spatial light
modulators.Figure 44shows the image produced by polarization encoding using
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Fig. 43. An optical system for converting incident polarized light into an arbitrary state of elliptically
polarized light with the major axis of the elliptically polarized light rotated by an arbitrary angle. The
lines denote the extraordinary axis of the SLMs, the quarter-wave plates (1

4λ) and the polarization
direction of the linear polarizer. (FromEriksen, Mogensen and Glückstad [2001].)

Fig. 44. (a) Intensity pattern with the analyzer–polarizer perpendicular to the input polarizer. (b) In-
tensity pattern with the analyzer–polarizer parallel to the input polarizer. (c) Intensity pattern with
the analyzer–polarizer parallel to the ordinary axis of the LCSLM. (d) Intensity pattern with the an-
alyzer–polarizer parallel to the extraordinary axis of the LCSLM. (FromDavis, McNamara, Cottrell

and Sonehara [2000].)

a polarizer–analyzer in different orientations. Another approach, discussed exten-
sively throughout this chapter, is utilizing space-variant sub-wavelength gratings.
Zeitner, Schnabel, Kley and Wyrowski [1999]demonstrated diffractive elements
with polarization multiplexing for visible light constructed with metal-stripe sub-



4, § 4] Applications of space-variant polarization manipulation 279

Fig. 45. Scanning-electron microscope picture of the element structure etched into the chromium layer.
(FromZeitner, Schnabel, Kley and Wyrowski [1999].)

wavelength period gratings. They introduced different functions of the element for
two orthogonal polarization directions using polarization-dependent pixel trans-
mission, which was realized by sub-wavelength gratings within a pixel.Figure 45
shows a scanning-electron microscope picture of a region in the structured ele-
ment.

Another interesting application that utilizes polarization encoding is optical
computing.Lohmann and Weigelt [1987]proposed a spatial filtering logic ap-
proach based on polarization. Using polarization logic instead of diffraction logic
or scattering logic operations has several advantages. There is no loss of energy
for both logic values 0 or 1, which is desirable for cascading elements, and po-
larization logic has a high space-bandwidth product.Figure 46shows three dif-
ferent logical operations using a polarization-based spatial filtering logic method.
Hashimoto, Kitayama and Mukohzaka [1989]proposed space-variant operations
using optical parallel processor based on polarization encoding. A liquid-crystal
spatial light modulator residing in the processor is used as an operational kernel.
It enables a programmable space-variant operation to be performed on a real-time
basis by spatially filtering the encoded light, pixel by pixel. Free-space optical
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Fig. 46. Truth table for all sixteen binary logic operations and the corresponding filters in the second
Fourier plane. The right column shows results of laboratory experiments, which were made visible by
an analyzer (white= logical level 1, black= logical level 0). See also pages 134 and 135. Partly taken

from fig. 4 in the work ofLohmann and Weigelt [1987].

interconnects offer low cross talk, high bandwidth, and parallel operation, and are
therefore attractive for use in digital optical computers. Two particularly useful
interconnect schemes are based on the perfect-shuffle transform and its inverse.
Davidson, Friesem and Hasman [1992a]proposed realizing inverse perfect shuf-
fle by use of space-variant polarization-state manipulation. Their arrangement for
optical implementation of one-dimensional inverse perfect shuffle is shown in
fig. 47. The input is coded with an interlaced polarizing mask. The odd pixels are
covered with vertical polarizers whereas the even pixels are covered with hori-
zontal polarizers. The input is illuminated with diffuse laser light that is derived
from an argon laser (λ = 514.5 nm). The holographic optical element is com-
posed of two sub-holograms. The first sub-hologram is covered with a vertical
polarizer so as to transmit light coming from only the odd pixels, and the second
sub-hologram is covered with a horizontal polarizer so as to transmit light coming
only from the even pixels. As this method for perfect shuffle uses only a single
holographic optical element, it is simple, lightweight and compact.
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Fig. 47. Optical arrangement for implementing a one-dimensional PS−1 transform. (FromDavidson,
Friesem and Hasman [1992a].)

4.4. Space-variant polarization-dependent emissivity

Thermal emission from the bulk of a smooth, absorbing material is considered
to be incoherent and unpolarized, thus, it is correlated to spontaneous emission.
The surface properties of the absorbing material have a profound impact on its
optical properties, and can lead to partially coherent and partially polarized ra-
diation emission.Raether [1988]argued that in the case of materials with a di-
electric constant that has a negative real part, surface waves provide the con-
nection between the emission or absorption properties of the material and the
surface properties. There are two kinds of materials, that support surface waves:
conductive materials that support surface plasmon polaritons, and dielectric ma-
terials, that support surface phonon polaritons. Surface plasmon polaritons are
due to an acoustic type of oscillation of the electron gas. Therefore, the sur-
face electromagnetic waves are actually charge-density waves. The underlying
microscopic origin of the surface phonon polariton is the mechanical vibration
of the atoms or phonons(Marquier, Joulain, Mulet, Carminati, Greffet and Chen
[2004]).

A surface polariton has a longer wavevector than the light-waves propagating
along the surface with the same frequency. Therefore, they are called “nonra-
diative” surface polaritons. Their electromagnetic fields decay exponentially into
space perpendicular to the surface and have their maximum value in the surface,
as is characteristic of surface waves. In order to couple a propagating wave with
the surface polariton, an additional prism or grating is needed. In this case, the
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coupling is obtained for a certain frequency at a well-defined, propagating wave
direction. When using a grating, the relationship between the emission angleζ

and the wavelengthλ is simply given by the usual grating law,

(4.6)
2π

λ
sinζ = ksp + p

2π

Λ
,

wherep is an integer,Λ is the grating period, andksp is the wavevector of the
surface wave. The connection betweenksp, λ and the real part of the substrate’s
dielectric constant,ε′, is given by

(4.7)ksp = 2π

λ

√
ε′

1 + ε′ .

The coupling between the surface polaritons and the propagating wave can lead
either to an increased resonant absorption or to directional emission. Surface po-
laritons can be coupled only with TM-polarized propagating waves, and as a re-
sult the absorption or emission is polarization dependent (seeSetälä, Kaivola and
Friberg [2002]).

Greffet, Carminati, Joulain, Mulet, Mainguy and Chen [2002]used surface
wave theory to design and optimize a grating, ruled on a SiC substrate, that pro-
duced a strong peak of the emissivity around a wavelengthλ = 11.36 µm. They
measured the spectral reflection in various directions in order to obtain the emis-
sivity using Kirchhoff’s lawε = α = 1 − R, whereε, α andR denote the emis-
sivity, the absorption and the reflectivity, respectively. Their results are shown in
fig. 48. The emission spectra of the thermal source are directionally dependent, as

Fig. 48. Emissivity of a SiC grating in TM-polarization. Line (a):λ = 11.04 µm; line (b):λ =
11.36 µm; line (c):λ = 11.86 µm. The emissivity was deduced from measurements of the specu-
lar reflectivity R using Kirchhoff’s law. The data have been taken at ambient temperature using a
Fourier-transform infrared (FTIR) spectrometer as a source and a detector mounted on a rotating arm.
The angular acceptance of the spectrometer was reduced to a value lower than the angular width of
the dip. The experimental data are indicated by circles; the lines show the theoretical results. (From

Greffet, Carminati, Joulain, Mulet, Mainguy and Chen [2002].)
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predicted byWolf [1987]. They approximated the coherence length asλ/ζ to be
60λ. Furthermore,Marquier, Joulain, Mulet, Carminati, Greffet and Chen [2004]
showed that in certain frequencies the emission could be frequency-resonant and
nondirectional.

Spatial variation of the emissivity can be obtained by using space-variant grat-
ings embedded in a polar material(Dahan, Niv, Biener, Kleiner, Hasman [2005]).
Accordingly, by spatially controlling the emissivity, we can generate spatially
varying polarized fields. These can be used in various applications such as thermal
polarization imaging, optical encryption, spatially modulated heat transfer, and
the formation of high-efficiency thermal sources. We realized four space-variant
elements with local groove orientations ofθ = 1

2mω, wherem is the polariza-
tion order number andω is the azimuthal angle of the polar coordinates. Such an
element forms a spiral-like intensity and is appropriately called a spiral element.
The elements formed were designed for polarization order numbersm = 1, 2, 3
and 4. We optimized such a grating using RCWA to receive maximum emission
at a wavelength of 9 µm on a fused silica substrate, which is a polar material.
The grating period was 2 µm with a fill factor of 0.3 and a depth of 0.8 µm. It
was fabricated using advanced photolithographic techniques. In order to reduce
signal-to-noise ratio the realized element was heated to 80◦C. An image of the
four elements, captured using a thermal camera with and without a polarizer–
analyzer, is shown infig. 49. Evidently, space-variant intensity modulation was
obtained using the polarizer–analyzer due to space-variant polarization-dependent
emissivity.

Fig. 49. Thermal image of four SiO2 spiral elements. The elements are at uniform temperature of 80◦C
hence the intensity is proportional to the emissivity. (a) With analyzer one can observe space-variant
intensity. The polarization direction of the radiation from the dark sectors is perpendicular to the bright

sectors. (b) Without analyzer, one observes uniform intensity.
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§ 5. Concluding remarks

Computer-generated holograms(Brown and Lohmann [1966], Lee [1974, 1978])
and diffractive optics had revolutionized the field of optics by allowing the forma-
tion of scalar fields with arbitrary phase structures. More recently, space-variant
polarization manipulation using computer-generated polarization elements such
as sub-wavelength gratings and liquid-crystal modulators has led to new ap-
proaches for obtaining complex fields.

In this review we have explored the nature of beams with space-variant
polarization-state distributions. We began by discussing several possible methods
for forming beams. These included computer-generated sub-wavelength metal
or dielectric gratings, polarization interferometric methods, liquid-crystal devices
and polarization-sensitive recording materials. The extensive discussion on sub-
wavelength gratings included a theoretical background of sub-wavelength grat-
ings along with theoretical analysis and experimental demonstration of space-
variant sub-wavelength metal and dielectric gratings. Several general design ap-
proaches for space-variant polarization optics were reviewed.

Space-variant polarization-state manipulations are necessarily accompanied by
a geometrical phase – the Pancharatnam–Berry phase. We have demonstrated the
generation of optical phase elements based on a space-domain Pancharatnam–
Berry phase (Pancharatnam–Berry-phase optical elements, PBOEs). We then dis-
cussed the ability to utilize this phase to form sophisticated scalar as well as vec-
torial wavefronts. Following this, the effect of this geometrical phase on the prop-
agation of a vectorial beam was explored. We believe that PBOEs will advance
a variety of applications in modern optics and will lead to novel approaches in
nano-optics as well.

We then moved on to review several applications involving space-variant
polarization-state manipulation. These applications included near-field and far-
field polarimetry, imaging polarimetry, spatial polarization scrambling, namely
depolarizers, polarization encryption and polarization encoding. A preliminary
study of space-variant polarization-dependent emissivity was presented.

Theoretical research involving space-variant polarization distribution is still in
the primary stages and experimental demonstrations are somewhat limited. Nev-
ertheless, this field has great potential to influence several other fields such as
bioimaging and biosensing, optical tweezing and optical computing among oth-
ers. To indicate the great interest in space-variant polarization manipulation, we
can cite several preliminary works in these fields.Hielscher, Eick, Mourant, Shen,
Freyer and Bigio [1997]reported on measuring the Mueller matrix of a cancerous
and a noncancerous cell suspension. More recently,Galajda and Ormos [2003]de-
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scribed the effect of using polarized light on the trapping of nonspherical beads.
There are numerous other studies dealing with the influence of polarized light on
light–matter interactions. It would seem that there are countless possible areas
to explore dealing with space-variant polarized beams. One such area is that of
optical computing, and we cited two studies that exploited the properties of po-
larization – the logical operation suggested byLohmann and Weigelt [1987]and
the interconnect proposed byDavidson, Friesem and Hasman [1992a].

This review has focused mainly on polarized, coherent and monochromatic
light beams. Further experimental and theoretical investigations should be con-
ducted on partially polarized, partially coherent, polychromatic light beams
with space-variant polarization-state distribution(Gori, Santarsiero, Borghi and
Piquero [2000]). These investigations should also include nonparaxial beams.
Finally, more comprehensive research should be conducted in the field of polar-
ization thermal emissivity, with the emphasis on the interaction between space-
variant polarized coherent emission and the excitation of surface phonon or plas-
mon polariton resonance.
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