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Abstract: Metasurface optical elements, optical phased arrays constructed from a dense 
arrangement of nanoscale antennas, are promising candidates for the next generation of flat 
optical components. Metasurfaces that rely on the Pancharatnam-Berry phase facilitate 
complete and efficient wavefront control. However, their operation typically requires control 
over the polarization state of the incident light to achieve a desired optical function. Here, we 
circumvent this inherent sensitivity to the incident polarization by multiplexing two 
metasurfaces that were designed to achieve the same optical function with incident light of 
opposite helicity. We analyze the optical performance of different multiplexing approaches, 
and demonstrate a subwavelength random interleaved polarization-independent metasurface 
lens operating in the visible spectrum, providing a diffraction-limited spot size for the shared-
aperture. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 
Dielectric optical nanoantennas are well-known for their ability to manipulate light at a sub-
wavelength scale [1–6]. Flat optical components can be constructed from a dense 
arrangement of such structures in a planar arrangement and operate in a similar fashion to 
phased array antennas capable of reshaping the wavefront of an incident light wave [7–13]. 
These optical components are often called metasurfaces to emphasize that they are thin 
compared to the free-space wavelength of light [14]. They have enabled the realization of a 
range of optical functions and new physical concepts, including beam steering [9, 10, 15, 16], 
lenses [17–20], holograms [21, 22], thermal radiation control components [23], the optical 
Rashba effect [23, 24] and spin-optical devices [25, 26]. 

One type of metasurface is composed of antennas whose size or shape varies with 
position. A practical advantage of such components is that their operation can easily be 
rendered insensitive to the polarization state of the incident light [9, 15, 19, 27–31]. However, 
their phase profile tends to produce a highly dispersive performance, and it is challenging to 
decouple the local transmissivity and phase response as both have distinct dependencies on 
the antenna size and shape. The second type is based on the Pancharatnam-Berry phase 
(geometric phase) [32, 33] that results from a space-variant orientation of optical nano-
antennas in order to control the local phase pick-up [7, 8, 12, 17, 34]. The geometric phase 
emerging from a surface patterned with such oriented nano-antennas is given by φg = 2σθ(x, 
y), where σ = ± 1 denotes the incident polarization helicity photonic spin-states, right (σ+) and 
left (σ-) circular polarization; here θ(x, y) is the orientation profile. Importantly, this phase can 
be designed to span the full 2π range while maintaining uniform transmission amplitude, 
resulting in high diffraction efficiencies across broad operational bandwidths. However, 
achieving a desired optical function using geometric phase typically requires the use of 
circularly-polarized light, and distinct optical properties are obtained for incident light beams 
with opposing helicities. For example, a metasurface designed to focus incident light with 
right circular polarization, will diverge for incident left circular polarization [7, 8, 17]. This 
distinct response offered by such a metasurface has been exploited for chiral imaging [35] and 
polarimetry [36–38]. 

Here, we propose a polarization-independent metasurface based on the Pancharatnam-
Berry phase and shared-aperture phased-array concepts [39–45]. The polarization 
independence results from spatial multiplexing of two metasurfaces that are designed to 
provide the same optical function for incident light beams of opposite helicity. Study of the 
spatial multiplexing technique together with the optical performance of the components is 
presented. In this work we demonstrate interleaved flat optical lenses that preserve the 
numerical aperture of the entire shared-aperture, and that offer a polarization-independent 
focusing of the incident light using an ultrathin lightweight optical element. 

2. Polarization-independent lens based on the geometric phase 
Figure 1 illustrates the design principle of a polarization-independent flat lens utilizing the 
geometric phase. Previously, it was demonstrated that a spherical geometric phase 
metasurface focuses light into a diffraction-limited focal spot in a spin-dependent manner (see 
Fig. 1(a) and 1(e)) [12, 17]. First a 90-μm-diameter lens with a focal length f of 100 μm is 
designed to focus an incident σ- beam at wavelength λ of 550 nm. A calculation based on the 
Fresnel approximation shows a diffraction limited focal spot with a 0.75 μm full width at half 
maximum (FWHM), however incident light of opposite spin will be defocused. 
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Fig. 1. Calculated phase profiles and diffraction patterns for single and spatially multiplexed 
flat optical lenses. The phase profiles are shown for σ- for (a) a single, 90-μm-diameter lens, 
(b) a multiplexed lens composed of 2-segments/half-lenses which feature reversed phase 
profiles to allow focusing of both σ- and σ+, (c) a multiplexed lens composed of 8 segments, (d) 
a randomly interleaved lens. (e-h) The corresponding amplitude distributions for the calculated 
diffraction pattern at the focal plane under plane wave illumination with 550 nm circularly 
polarized light. The intensity distribution through the focus is shown in the inset. The 
amplitude is normalized to the maximum intensity for each focal spot. The length of the scale 
bar is 10 μm. 

A simple approach to focus light of both circular polarizations is to divide the lens into 
two equally sized segments, with the left side the geometric mirror image of the right side. 
Hence, we assign a distinct orientation profile to each segment according to 

 2 2 2 2 2 22 2
1 22 ( , ) ( ), 2 ( , ) ( ).x y f x y f x y f x y fπ π

λ λθ θ= − + + = − − + +   
Each half-lens segment focuses light of a distinct helicity onto the focal plane. Together, 

the two halves form a new, segmented, 90-μm-diameter lens as depicted in Fig. 1b. The 
calculated focal spot is elongated along the horizontal direction due to the reduced aperture of 
each individual sub-lens in the horizontal direction (see Fig. 1(f)). The theoretically calculated 
FWHM from Fig. 1(f) is of 1.3 μm and 0.72 μm along the x and y directions, respectively. 
Another approach is given by a multiplexed lens that uses a larger number of segments, which 
can be accomplished for example by creating more tangential segments, as illustrated in Fig. 
1(c). Figure 1(g) shows that the resulting focal spot is indeed reduced in size and assumes a 
more circular shape. However, due to the periodic tangential segments, a set of undesired 
diffraction spots around the central focus is obtained. To avoid this imaging artifact we 
further interleave these conjugated lenses through spatially randomized subwavelength 
multiplexing. The spatial interleaving is implemented by dividing each of the distinct phase 
profiles into equally distributed segments, then randomly selecting the segments from the 
multiple distinct phase profiles to produce random spatial multiplexing. The interleaved lens 
is constructed from numerous segments, and maintains the diffraction-limit of the shared 
aperture as depicted in Fig. 1(d) and 1(h), while suppressing undesired diffraction spots. From 
this analysis, it is clear that one can use the random interleaving approach to effectively 
incorporate the optical functionality of two distinct optical elements into one spatial surface 
area. Note the maximum intensity (IM) of the focal spots in Figs. 1(f)-1(h) are 0.251 I0, 0.252 
I0 and 0.260 I0 respectively; where I0 is the maximum intensity for a perfect full lens. The 
maximum intensity for the interleaved lens is in agreement with the theoretical prediction of 
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1/N2 = 0.25, where the reduced energy in the focal spot is distributed to the side lobe or 
speckle noise. The integrated power at the focal plane in the case of Fig. 1(f)-1(h) is 
approximately reduced according to 1/N = 1/2, where N is the number of channels by which 
light is focused. This is in correlation to the effective aperture of each phase profile [43, 44]. 
Segmented polarization-independent lens based on geometric phase preserves the advantages 
of geometric phase based optical element and gives rise to additional optical functionalities, 
but with a reduction in it intensity. 

The phase profiles are implemented with 8-discrete levels [46] using poly-crystalline Si 
nanobeam antennas with subwavelength spacings and space-varying orientations [12]. The 
antennas are 100 nm high, 120 nm wide and feature an edge-to-edge-spacing of 80 nm. We 
experimentally investigate the focusing performance of the lens with 2-segments first and 
fabricate it by electron-beam lithography (see Fig. 2(a)). To analyze the optical performance 
of the lens we illuminate the structure with a collimated circularly-polarized beam, at a 
wavelength of 550 nm from a spectrally filtered supercontinuum laser. The detail of the 
fabrication procedure and optical characterization can be found in our previous publication 
[12]. Figures 2(b) and 2(c) demonstrate the intensity distribution in the focal plane which was 
measured using a confocal microscope, where the FWHM of the focal spot is 1.44 μm and 
0.765 μm along the x and y directions, respectively. These results are in good agreement with 
the theory shown in Fig. 1f. The size and shape of the focal spot at the focal plane are 
identical to those obtained with circularly-polarized light, demonstrating the polarization-
independent performance. However, the focused light is seen to be tilted away from the 
optical axis and also characterized by a large FWHM along the x-direction due to the fact that 
only half of the metasurface lens contributes to the focus for a given circular polarization. 
When the lens is illuminated with linearly-polarized light, constituted from equal amounts of 
σ- and σ+, it focuses this light onto the designed focal plane in a slightly different fashion 
along propagation axis (see Figs. 2(d) and 2(e)). 

 

Fig. 2. (a) Scanning electron microscope image of a metasurface lens composed of 2 segments. 
(b and c) Measured intensity profile of the focal spot in the focal plane at z = 100 μm upon 
illumination with left circularly (b) and linear (c) polarization. The inset shows the intensity 
distribution through the focus along the x-axis. (d and e) Measured intensity profile of the 
transmitted light behind the polarization-independent metasurface lens along x-z plane and y-z 
plane upon illumination with circularly (d) and linearly (e) polarized light. The scale bars in 
the panels are 2 μm. 

3. Polarization-independent lenses with randomly interleaved antennas 
We also studied the performance of polarization-independent lenses with randomly 
interleaved antennas. The design starts by establishing the required geometric phase profile 
for a single metasurface lens that effectively focuses σ- and σ+, individually (see schematic in 
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Fig. 3). In order to achieve a rotationally symmetric performance, we divide concentric rings 
in the lens into a large number of segments and then randomly assigned the phase-profile of 
either the σ- or σ+. 

 

Fig. 3. Random subwavelength interleaved approach. (a-d) Nanopattern design for a single 
metasurface lens showing how incident σ- (a,b) and σ+ (c,d) is focused by the metasurface lens. 
(e) Design of a polarization-independent interleaved metasurface lens. Concentric rings in the 
lens were divided up in segments and randomly assigned the phase-profile of either the σ+ or σ- 

We fabricated the designed metasurface lens by electron-beam lithography as shown in 
Fig. 4(a), and illuminated it with a collimated 550 nm wavelength circular polarized beam as 
(see results in Figs. 4(b) and 4(c)). This demonstrates that both the spot size and the intensity 
distribution in the focal plane is the same for the two opposing helicities. A radially 
symmetric focal spot was measured with a FWHM of 0.85 μm, thanks to the larger effective 
aperture through random interleaving, which is in a good agreement with theory and much 
smaller than the focal spots shown in Fig. 2 (FWHM = 1.44 μm). Importantly, when the 
random interleaved metasurface is illuminated with linearly polarized light, the measured 
focal spot is equal to the measured foci for σ- or σ+ illumination individually as shown in Fig. 
4(d). The measured optical intensity distributions of the transmitted beam along the 
propagation direction which are demonstrated in Figs. 4(e)-4(g), show that the intensity 
distributions of the focused beam along the optical axis are identical regardless of the 
polarization state of the incident light. The size and intensity of the measured focal spot fully 
agrees with the theoretical prediction, as discussed in Fig. 1h. This demonstrates that the 
interleaving approach allows the creation of a lens with a numerical aperture that corresponds 
to the shared-aperture. Note that this lens will work for unpolarized light – an incoherent 
superposition of σ+ and σ-. 
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Fig. 4. (a) Scanning electron microscope image of the fabricated polarization-independent 
random interleaved metasurface lens. The scale bar is 2 μm. (b-d) Optical microscope images 
of the focal spot measured at a focal plane of z = 100 μm upon illumination with σ-, σ+ and 
linear polarization, respectively. (e-g) Measured intensity profile in the x-z plane upon 
illumination with σ-, σ+ and linear polarized light, respectively. The inset along the x-axis 
shows the cross-sectional intensity profile at the focal plane, z = 100 μm. 

4. Concluding remarks 
In conclusion, we have demonstrated polarization-independent metasurface lenses based on 
the geometric phase through a multiplexing approach. The elements are constructed from 
nanoscale Si antennas that afford operation in the visible spectral range. We investigated the 
optical properties of such metasurfaces with various degrees of multiplexing. The design 
approach, which was demonstrated for a lens, can be easily extended to polarization-
independent metasurfaces that exhibit other optical functions. This further extends the 
possible use of geometric phase elements for a wide range of integrated optical applications in 
imaging and display. 
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