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Abstract: Linearly polarized vectorial vortices are analyzed according to
their Pancharatnam phase and experimentally demonstrated using a
geometric phase element consisting of space-variant subwavelength
gratings. It is shown that in the absence of a Pancharatham phase, stable
vectorial vortices that have no angular momentum arise. In contragt, if a
Pancharatnam phase is present the vectorial vortices have orbital angular

momentum and collapse upon propagation.
©2006 Optical Society of America
OCI S codes:. (050.2770) Gratings; (260.5430) Polarization.

References and links

1. M. S Soskin, M.V. Vasnetsov, “ Singular optics,” in Progressin Optics, Vol. 42, E. Wolf ed. (Elsevier,
Netherlands, Amsterdam, 2001), pp. 219-276.

2. D.Pdlacios, D. Rozas, and G. A. Swartzlander Jr., “ Observed scattering into a dark optical vortex core,”
Phys. Rev. Lett. 88, 103902 1-4 (2002).

3. J.F. Nye, “Polarization effect in the diffraction of electromagnetic waves: therole of disclinations,” Proc.
R. Soc. Lond. A 387, 105-132 (1983).

4.  J.F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. R. Soc. London Ser. A 389,
279-290 (1983).

5. J.V.Hand, “Singularitiesin the transverse fields of electromagnetic waves,” Proc. R. Soc. Lond. A 414,
433-446 and 447-468 (1987).

6. |. Freund, “ Polarization singularity indicesin Gaussian laser beams,” Opt. Commun. 201, 251-270 (2002).

7.  M.R. Dennis, “Polarization singularities in paraxial vector fields: morphology and statistics,” Opt.
Commun. 213, 201-221 (2002).

8.  P. Padkkonen, J. Tervo, P. Vahimaa, J. Turunen, and F. Gori, “General vectorial decomposition of
electromagnetic fields with application to propagation-invariant and rotating fields,” Opt. Express 10, 949-
959 (2002).

9.  A.Niv, G. Biener, V. Klener, and E. Hasman, “ Propagation-invariant vectorial Bessel beams obtained by
use of quantized Pancharatnam-Berry phase optical elements,” Opt. Lett. 29, 238-240 (2004).

10. A.Niv, G. Biener, V. Klener, and E. Hasman, “ Rotating vectorial vortices produced by space-variant
subwavelength gratings,” Opt. Lett. 30, 2933-2935, (2005).

11. D. Mawet, P. Riaud, O. Absil, and J. Surdgj, “ Annular groove phase mask coronagraph,” Astro. Phys. 633,
1191-1200 (2005).

12. Y. Liu, D. Clinge and P. He, “Vacuum laser acceleration using aradially polarized CO, laser beam,” Nucl.
Instrum. Meth. Phys Res. A 424, 296-303 (1999); W. D. Kimura, G. H. Kim, R. D. Romea, L. C.
Steinhauer, 1. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of
relativistic electons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546-549 (1995).

13. S Quabis, R. Dorn, M. Eberler, O. Gléckl, and G. Leuchs, “Focusing light to atighter spot,” Opt.
Commun. 179, 1-7 (2000).

14. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal
polarization converters,” Opt. Lett. 21, 1948-1950 (1996).

15. R.Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “ The formation of laser beams
with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322-3324 (2000).

16. K.C. Toussaint Jr., S. Park, J. E. Jureller, and N. F. Scherer, “ Generation of optical vector beams with a
diffractive optical e ement interferometer,” Opt. Lett. 30, 2846-2848 (2005).

#69636 - $15.00 USD Received 3 April 2006; revised 2 May 2006; accepted 2 May 2006

(C) 2006 OSA 15 May 2006/ Vol. 14, No. 10/ OPTICS EXPRESS 4208


mailto:mehasman@tx.technion.ac.il
http://www.technion.ac.il/optics

17.  A.Niv, G. Biener, V. Kleiner, and E. Hasman, “ Formation of linearly polarized light with axial symmetry
by use of space-variant subwavelength gratings,” Opt. Lett. 28, 510-512 (2003).

18. Z.Bomzon, G. Biener, V. Kleiner, and E. Hasman, “ Space-variant Pancharatnam-Berry phase optical
elements with computer-generated subwavelength gratings,” Opt. Lett. 27, 1141-1143 (2002).

19. Q. Zhanand J. R. Leger, “Interferometric measurement of the geometric phase in space-variant polarization
manipulations,” Opt. Commun. 213, 241-245 (2002).

20. E.Hasman, G. Biener, A. Niv, and V. Kleiner, “ Space-variant polarization manipulation,” in Progressin
Optics, vol. 47, E. Woalf ed. (Elsevier, Netherlands, Amsterdam, 2005), pp. 215-289.

21. L. Allen, M.J. Padgett, and M. Babiker, in Progressin Optics, vol. 39, E. Wolf ed. (Elsevier, Netherlands,
Amsterdam, 1999), pp. 291-372.

22. M. Bornand E. Walf, Principles of Optics, seventh ed. (Cambridge University Press, Cambridge, UK,
1999), Section 15.5.2.

23. R.C. Enger and SK. Case, “Optica elements with ultrahigh spatial-frequency surface corrugations,” Appl.
Opt. 22 3220-3228 (1983).

24. L. H. Cescato, E. Gluch, and N. Streibl, “Holographic quarterwave plates,” Appl. Opt. 29 3286-3290
(1990).

25. A.Niv, G. Biener, V. Kleiner, and E. Hasman, “ Spiral phase elements obtained by use of discrete space-
variant subwavelength gratings,” Opt. Commun. 251, 306-314 (2005).

26. S. Pancharatnam, “ Generalized theory of interference and its applications. Part |. Coherent pencils,” Proc.
Ind. Acad. Sci. A 44 (1956) 247 [reprinted in S. Pancharatnam, Collected Works (Oxford University Press,
1975)].

27. P.K. Aravind, “A simple proof of Pancharatnam's theorem,” Opt. Commun. 94, 191-196 (1992); C.
Brosseau, Fundamentals of Polarized Light (Wiley, New Y ork, 1998).

28. E. Collett, Polarized Light (Marcel Dekker, New Y ork, 1993).

1. Introduction

Singularities in scalar wave fields appear at points or along lines where the phase or the
amplitude of the wave is either undefined or changes abruptly. An important type of
singularity is the scalar vortex. A scalar vortex occurs where the phase of the scalar wave has
a spiral structure around a singular point in the field [1]. Until now, research had focused
mainly on this type of singularity [2]. However, if we alow the polarization to be space
varying, vectorial vortices can be generated [3-7]. A vectoria vortex occurs around a point
where a scalar vortex is centered in at least one of the scalar components of the vectorial wave
field. Vectorial vortices can be found in the fields proposed by Padkkénen et al. [8], at the
center of vectorial Bessel beams [9] as well as a the center of a recently proposed
phenomenon — rotating vectorial vortices [10]. It is expected that vectoria vortices will find
application in advanced optica schemes such as phase mask coronagraphy [11], particle
acceleration [12], and the tight focusing of light beams [13]. Vectoria vortices can be
achieved by several means: liquid crystal devices [14], the intracavity summation of laser
modes [15], interferometric techniques [16], and space-variant subwavelength gratings
[9,10,17].

This paper experimentally studies and analyzes linearly polarized vectorial vortices by use
of geometric phase elements. It is argued that the Pancharatnam phase is a prominent
structural feature of these fields, where the Pancharatnam phase is the argument of the inner
product of distinctly polarized waves [18,19]. We show that linearly polarized vectorial
vortices that have no Pancharatnam phase are stable upon propagation and have no angular
momentum. However, if a Pancharatnam phase is present, then the linearly polarized vectoria
vortices have orbital angular momentum and collapse upon propagation. The vectorial
vortices are achieved by use of discretely oriented space-variant subwavelength gratings.
These devices employ a geometric Pancharatnam phase that results from space-variant
polarization state manipulation [20]. The structure and properties of linearly polarized
vectoria vortices are reviewed in chapter 2. The design and fabrication of the space-variant
subwavelength gratings used to generate these vectorial vortices are described in chapter 3.
The gratings were realized on GaAs wafers and illuminated by CO, laser radiation of 10.6um
wavelength. Chapter 4 describes the experimental demonstration verifying the theoretical
analysis of the vectorial vortices generated by these space-variant subwavelength gratings.
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This verification was achieved by measuring the full polarization state at the immediate outlet
of the devices, and at their Fraunhofer diffraction. Our concluding remarks are presented in
Chapter 5.

2. Theory
2.1 The structure of vectorial vortices and their Pancharatnam phase

The most general polarization state of alinearly polarized vectorial vortex can be written as
1 ' . 1 . .
E)=—exp(imp+igp,/2)R)+—explinp—igp,/2) L) 1)
‘ > B p( P+ 10, )‘ > > p( Q=@ )‘>

where m and n are integers, |R) and |L) are the right- and left-handed polarization unit
vectors, respectively, and ¢ is the angle in the polar coordinate system (r,¢). Equation (1) is
consistent with the definition of a vectoria vortex as defined above [10]. The linearity of the
field is secured by having equal magnitudes of the circularly polarized components, while ¢y
represents arbitrary retardation. As linearly polarized vortices are the sole topic of this paper,
the term "vectorial vortex" will henceforth serve as the abbreviation for "linearly polarized
vectorial vortices'. Figure 1 illustrates the polarization state of vectorial vortices with different
values of mand n, with ¢, =0; the polarization ellipses have degenerated and thus appear as
bars. Usually, vectorial singularities are studied by looking at the tempora evolution of the
field [3,4], however for brevity's sake, we have consigned this discussion to Appendix A.

An effective way to understand the structure of a field is to study its Pancharatnam phase

[17]. The Pancharatnam phase between two distinctly polarized waves | A) and |B) is defined
according to ¢, =arg(A|B). Note that a 7 phase of indeterminate sign appears in ¢, across
point where (A|B)=0. However, as these steps are of no special physical significance, they
will be omitted from the following discussion altogether. Taking \E((p=0)> as a reference,

the Pancharatham phase of the vectorial vortex is given by
m+n
¢ =ag(Elp=0)|E(@) =——¢- @
Therefore, linearly polarized waves at different azimuthal locations across the field are not
only rotated with respect to each other according to (m-n) @2, [as calculated from Eqg. (1)], but
are also advanced or retarded according to Eqg. (2).
This result is easily observed by presenting Eq. (1) in the Cartesian basis explicitly as,
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Fig. 1. Azimuthal angle distribution of the polarization state for vectorial
vortices with m-n equal -1, 1, 2 and 4 (from left to right).
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The rotation is indicated by the Jones vector, and the Pancharatham phase is equal to the
phase inside the exponent. In appendix A, we show that the Pancharatnam phase is aso in
agreement with the temporal behavior of the field.

Topological charges are an important aspect of scalar vortices as they are directly related
to the orbital angular momentum of canonical vortices [21]. In this study, we attempt to
associate a topological charge with the vectorial vortex. We show that there is a correlation
between the topological charge of the vectorial vortex and its angular momentum. In scalar
fields, topological charges are defined according to the number of 27 radians that the phase of
the scalar wave accumulates along a closed path surrounding the singularity. The topological

charge of the vectorial vortex is defined in the same manner, but uses the Pancharatnam phase
instead of the scalar phase. Thus,

exp[i m;r n (PJ ' ®)

|P=21”£d(pp, 4

where the integration path, C, encircles the phase singularity. We denote the topological
charge of the vectoria vortex as atopological Pancharatnam charge. Applying Eg. (2) to Eq.
(4), the topological Pancharatnam charge of the vectoria vortex is [p=(m+n)/2. To edtablish
the connection between | and the angular momentum of the vectoria vortex, let us first
calculate the total angular momentum of the vectorial vortex as the sum of the orbital angular
momentum of its scalar components. The spin angular momentum is canceled out as indicated
by EqQ. (1). This calculation results in a normalized angular momentum of,

J, _m+n (5)

P 2w

where P isthe total intensity of the field and wis the optical frequency. Comparing this result
to the expression for the topological Pancharatnam charge of avectoria vortex, we find,
. _le (6)
P w
Therefore, the topological Pancharatnam charge, with respect to the orbita angular
momentum of vectorial vortices is analogous to the topological charge of scalar vortices.
From Eq. (1), the Fraunhofer diffraction of avectorial vortex is given by,
. R
En(r.0.2)= kexp(ikz) i™expli(me + @, /2)]ij(krr'/ Z)r'dr' |R)+
vz o . ©

|:i " expli(ng— g,/ 2)]je J,(krr'/ Z)r'dr } L>}

0

Here, z is the propagation distance, k is the wavenumber, and R corresponds to the radius of
the finite aperture of the field. Equation (7) shows that the components of the vectorial vortex
undergo different modulations as the distance z is increased. As a result, a vectorial vortex
does not maintain its structure upon propagation. However, in the unique case where no
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Pancharatnam phase is present, i.e, n = - m [see Eq. (2)], Eq. (7) reduces to,

_ kexp(ike)i™* (cosmp+@o)ie ) (v (8
‘th(r,(ﬂ,z)>— . [sin(mgoﬂpo)J!Jm(krr/z)r dr ®

In this specia case, the vectorial vortex maintains its polarization structure upon propagétion.
From Eqg. (7) and (8) we conclude that fields with Pancharatham phases other than zero do not
maintain their polarization structure upon propagation, while the polarization sate of fields
with no Pancharatnam phase is stable.

2.2 Geometric phase d ements

Vectorial vortices are easily generated using discretely oriented space-variant subwavelength
gratings. It is well known that when the period of a dielectric grating is smaller than the
incident wavelength, only the zero diffraction order is propagating and all the other orders are
evanescent. In this case, the grating behaves as a uniaxial crystal with the optical axes parallel
and perpendicular to the subwavelength grooves [22-24]. By fabricating a subwavelength
grating in which the groove orientation varies along the face of the element, a space-variant
wave plate is realized. We have previoudy shown [25] that the field emerging from such a
deviceisgiven by,

[En) = (41,8 Eq)+ (1,88 R(LE, ) +e ™ [LYRIE, )] ©)

where |E,,) represents the beam impinging on the device and 6= &x.y) is the local orientation

of the subwavelength grooves. ty, t, are the amplitude transmission coefficients for light
polarized perpendicular and parallel to the subwavelength grooves, respectively, and ¢ is the
retardation phase. Equation (9) indicates that the field emerging from a space-variant
subwavelength grating comprises three components. The fird¢ maintains the original
polarizaetion state and phase of the incoming beam. The second is right-handed circularly
polarized and has a phase modification of 264(x,y). The third has an orthogonal polarization
direction and opposite phase modification with respect to the second component. Note that the
magnitude of the different components is determined by the local birefringent parameterst,, t,
and ¢, aswell as by the incoming polarization state for the second and third components. The
transmission of dielectric gratings is relatively high and the retardation ¢ is primarily a
function of the subwavelength grooves etching depth. Therefore, we consider devices with
subwavelength grooves for which tty~1 and ¢ = wor 712, i.e. perfect space-variant half and
guarter wave plates.
Let us consider alocal orientation of the subwavelength grooves as,

gz%ﬂ% (misan integer). (10)

The beam emerging from a space-variant subwavelength grating with this groove orientation,
where 6= @2, t,=t,=1, and ¢ =, for linearly polarized illumination is,

1 . .

E,.)=—~e™|R)+e™|L)|- (1)

Eu) = ™R+ e L)
Thisfield resembles Eq. (1) for n = -m. Thus, a vectoria vortex with field vectors which has
no Pancharatham phase is produced. From the discussion in chapter 2.1, this vectorial vortex
exhibits no orbital angular momentum and has beam-like propagation.

Another possibility for generating vectorial vortices using space-variant subwavelength

gratings is obtained once a circularly polarized plane wave impinges a device, acting as a
perfect quarter wave plate, i.e., t,=t,=1 and ¢ =472, with subwavelength groove orientation
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given by Eq. (10). In this case, if 6,=/4 and the illuminating beam is left- handed circularly
polarized, then according to Eq. (9) the emerging field is

\Eom>=%[e‘””“’\ R)+|L)] (12)

This field resembles Eq. (1) for n= 0. Thisis a vectoria vortex with Pancharatnam phase of
helical structure, thus ¢,=mg/2 as can be calculated from Eq. (2). From Eq. (5), this vectorial
vortex has an orbital angular momentum of ~nv2 per photon. However, from Eq. (7), we find
that it does not maintain its polarization structure upon propagation. Note, in case of m=+1 the
central singularity is a generic feature of vectorial fields known as C-point [4]. In both cases,
& is of no special importance apart from the case of the space-variant quarter wave plate with
m=2.

In the case of vectorial vortices that are generated by space-variant subwavelength

gratings, the Pancharatnam phase results from the space-variant polarization state
manipulations and is therefore geometric in nature. This is best understood by viewing the
polarization state manipulations involved in the formation of the vectoria vortices on a
Poincaré sphere. A Poincaré sphere is a unit sphere for which the normalized Stokes
parameters §1, §,, §3 serve as rectangular coordinates [26]. In this representation, a specific
polarization state is mapped to a point on the sphere, while polarization state transformations
are represented by geodesic lines connecting the initial and final polarization states. Let us
consider the geodesic triangle ABC of Fig. 2(a) using similar calculations to those performed
by Aravind [24]. It can be shown that if a wave in a state A is in phase with a distinctly
polarized wave B, and if A isaso in phase with another wave at polarization state C, then the
waves at states B and C are not necessarily in phase. In fact, the phase between them equals
half the area of the geodesic triangle ABC and is therefore geometric in nature [27].
Fig. 2(b) shows a mapping of the polarization state transformation of the vectorial vortex of
Eqg. (11) onto a Poincaré sphere. The incoming polarization state (point A on the sphere) as
well as the emerging polarization states at different locations are linear with different
orientations (points B and C on the sphere). In this case, the Pancharatnam phase between the
states A and B, and A and C is zero. As the geodesic triangle ABC encompasses a null area,
no geometric phase is obtained between the states B and C.

The case of the vectoria vortex of Eq. (12) is depicted in Fig. 2(c). Here, the incoming
wave (point A on the sphere) is left-handed circularly polarized, while the emerging field at
different locations is linearly polarized with different orientations (points B and C on the
sphere). It is easy to show (using Eq. (1) or Eq. (3) with n=0 and ¢=0) that in this case as
well, A isin phase with B and with C. According to the geometric considerations given in

Fig. 2. Mapping of the polarization state manipulation onto a Poincaré sphere. (a) In an
arbitrary case, (b) for the formation of a vectorial vortex without a Pancharatnam phase, (c)
for the formation of a vectorial vortex with a Pancharatnam phase.
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Ref. 27, we find the area of the geodesic triangle ABC (shaded in the figure) to be me
stradians. Therefore, a geometric phase that equals half the area enclosed on the Poincaré
sphere by the geodesic lines is added to the wave at C with respect to B. Comparing these
results with Eq. (2), we conclude tha vectoria vortices that are generated by space-variant
subwavelength gratings have an entirely geometric Pancharatnam phase.

3. Design and realization of subwavelength gratings for the generation of vectorial
vortices

In order to overcome the customary limitations of continuous space-variant subwavelength
gratings [17], in our gpproach [25], the desired groove orientation of Eq. (10) is approximated
by,

O(% Y| g, = Ful(me/ 2146, )] (Misaninteger). (13)

The function Fy() denotes a piecewise process that divides a desired groove orientation into
N equal zones. The discontinuities in the subwavelength pattern unavoidably lead to
diffraction. The efficiency of the first diffraction order is given by [25],

el “

This equation indicates that for 2, 4, 8, and 16 discrete steps, the first order diffraction
efficiency is 40.5%, 81.1%, 95.0%, and 98.7%, respectively. As the first order represents an

l/ A
/
/4
&
£ 4 J

o A 4

Fig. 3. Scanning electron microscope images (a) of a zretardation device with a nominal
etching depth of 5um and m=3 (b) of a zretardation device for m=4 (c) of a z/2- retardation

device with 2.5um nominal etching depth and m=3, (d) with higher magnification of the 72-
retardation device. Thelocal period of the depicted gratingsis 2um.
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-n=4

m=

m=-n=3

2um was chosen along with afill factor of

1, 2, 3, 4 were fabricated. The masks were 10mm in diameter and
16 zones. A subwavelength period of A
m=-n=2

16 [25]. High-resolution laser lithography chrome masks as generated using

1

_n_

exact replica of our desired continuous field, an amost perfect device can be achieved by
m

merely using N
10.6um wavelength radiation. The masks were transferred by contact lithography to 500um

thick GaAs wafers and space-variant subwavelength gratings were achieved using the
fabrication process described in Ref. 25. The nominal etching depths were 2.5¢m and 5um, in

order to achieve the desired #/2 and z—retardation, respectively. As afinal step, the backsides
of the elements were applied with an anti-reflection coating. Figure 3 shows scanning electron

Eq. (13) for =4 andm

had N
0.5 for use with
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Fig. 4. Measured intensity distributions for vectorial vortices imaged through a linear polarizer
immediately behind the elements, (a) without Pancharatnam phase and (c) with Pancharatnam

phase. (b), (d) Measured azimuthal angle distributions for the corresponding cases.
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microscope images of the devices. Discrete changes in the groove orientation as well as the
high aspect ratio and rectangular shape of the grooves are clearly observed. For a device with
nominal retardation of 7 radians, we have previously measured the amplitude transmission to
be tx = 0.74 and t, = 0.86, with actual retardation of ¢ = 0.977[25], thus high efficiency
devices are formed using the prescribed process. Fig. 4: Measured intensity distributions for
vectoria vortices imaged through a linear polarizer immediately behind the elements, (a)
without Pancharatnam phase and (c) with Pancharatham phase. (b), (d) Measured azimuthal
angle distributions for the corresponding cases.

4. Experimental results

Vectorial vorticesthat do not have a Pancharatnam phase were obtained by illuminating the 7=
retardation devices with 10.6um linearly polarized light from a CO, laser. Figure 4(a) shows
the intensity distributions at the immediate outlet of the devices when imaged through a linear
polarizer. The fringes indicate the rotation of the polarization ellipses according to Eq. (3) for
n= -m. We have measured the polarization state distribution of the vectoria vortices using the
four-measurement technique [28]. Figure 4(b) shows the azimuthal angle distribution. The
rotation around the field axis is clearly observed. We have found the typica deviation of the
azimuthal angle with respect to its desired value to be less than 2% (0.026 radians). The
typical dlipticity of the emerging field was less than 0.07 radian. This result is comparable
with the expected performance of a device with N=16, indicating the excellent ability of a
space-variant subwavelength grating to control the polarization state of a beam. Vectorial
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Fig. 5. (@) Measured intensity distributions at the Fraunhofer region for vectorial vortices
without Pancharatnam phases. (b) Typical cross sections of the intensity distribution in (a)
(crosses represent experimental measurements while solid lines represent calculations). (c)
Measured azimuthal angle distributions of the vectorial vortices polarization states.
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vortices having a Pancharatnam phase were obtained by illuminating the /2-retardation
devices with 10.6um left-handed circularly polarized light from a CO, laser. Figure 4(c)
shows the intensity distributions at the immediate outlet of the devices imaged through a
linear polarizer. In this case, the fringes indicate rotation of the polarization ellipses that isin
agreement with Eq. (3) for n=0. Figure 4(d) shows the measured azimuthal angle in this case.
Typica values for the deviation of the azimuthal angle and ellipticity, compared to their
desired value, are similar to the former case, thus indicating the formation of high quality
vectorial vortices.

4.1 Fraunhofer diffraction of vectorial vortices without Pancharatnam phase

The Fraunhofer diffraction of the vectoria vortices that do not have a Pancharatham phase
(i.e., n=-m) were obtained at the focus of alens with 1mfocal length. Figure 5(a) shows their
measured intensity distributions. The annular intensity pattern that is predicted by Eq. (8) is
clearly observed. Another way to understand this is to average the fields located on a circle
surrounding the singularity and limiting the circle radius to 0, thus

E =lim ! [E(r,¢))de (15)

where the field, E(r,¢), is calculated from Eq. (8). This average, in the presented case, results
in £=(0,0)", where T denotes transposition. Thus, the dark core is a result of destructive
interference of the field a the center. This outcome is also predicted by Eq. (1), when

m=2, n=0
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Fig. 6. (d) Measured intensity distributions at the Fraunhofer region for vectoria vortices with
Pancharatnam phase, obtained with a 7z/2-retardation device. (b) Typical cross sections of the
intensity distribution in () (crosses represent experimental measurements, while solid lines
represent calculated values), (c) measured polarization dlipse distribution of the vectoria

vortices. The colorsindicate the different rotation directions (handedness) of the field.
t The col dicate the different rotation direct handed f the field,
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considering conjugate scalar vortices embedded in both orthogonally polarized components of
the vectorial vortex. Typical cross sections of the intensity distributions are given in Fig. 5(b).
Good agreement between the experimental results and the theoretical analysis is obtained.
Moreover, Fig. 5(c) shows the measured space-variant azimuthal angle of the beam's
polarization state at the Fraunhofer region. The close resemblance of the polarization states
between the near- and the far-fields validates our conclusion that vectorial vortices that do not
have a Pancharatham phase maintain their structure upon propagation.

4.2 Fraunhofer diffraction of vectorial vortices with Pancharatnam phase

Fraunhofer diffraction of vectoria vortices that have a Pancharatnam phase were obtained at
the focus of a lens with 1m focal length, and are shown in Fig. 6(a). In this case, n=0 and a
bright spot at the center of the field is observed. The bright central spots are also shown in the
typical cross sections of Fig. 6(b). These bright central spots (as well as the annular intensity
rings) are anticipated from Eq. (7) for n = 0. This results from the congtructive interference at
the center of the field. The central spots' polarization state can be found by applying Eq. (7) to

Eq. (15), yielding E « |L) . The measured polarization ellipses of the far-field vectorial vortices

are shown in Fig. 6(c). Different colors indicate different handedness of the field. At the
boundary between handedness, there is aline of linear polarization known as an L-line [6]. At
the center of thefield, there are points of circular polarization known as C-points[7]. One can
see that the polarization dtate is radically different from the polarization state of the beam
emerging from the element. In other words, the polarization state of the propagated beam is
not a linearly polarized axially symmetric vectorial vortex. Therefore the vectorial vortex
collapses upon propagation, as discussed in chapter 2. Experimental evaluation of the central
spot showed its polarization state to be left-handed circularly polarized, as anticipated from
Egs. (7) and (15). Good agreement between theory and experimental results, as can be seen
fromFig. 6, is demongtrated.

4.3 Fraunhofer diffraction of general vectorial vortex

We have also demonstrated a vectoria vortex with mn+0as well as m#-n, (see Eq. (1) that has
a Pancharatnam phase, by combining a spiral phase element with a scalar topologica charge,
[, immediately behind the 7-retardation device. In this case, a phase of 1¢ is added to both
components of the beam producing
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Fig. 7. (8) Measured intensity distribution at the Fraunhofer region for a vectorial vortex with
Pancharatnam phase, obtained with a z-retardation device of m=3 and a spiral phase element with
atopological charge of 1=2. (b) Typical cross-section taken from the intensity distribution in (a)
(crosses represent experimental measurements, while solid line represents cal culated values). (c)
Measured polarization ellipse distribution of the vectorial vortex. The colors indicate the different
rotation directions (handedness) of the field.
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E>=\Eexp[i(m+l)(p]R)+\%6Xp[—i(m—|)¢]L>' (19

Equation (16) shows that any desired linearly polarized vectorial vortex can be obtained by
combining a spira helical phase element with a discretely oriented space-variant
subwavelength grating-based device. The vectorial vortex was achieved experimentally by
combining a spiral phase element with 1=2 and a z-retardation device of m=3. The spira
phase element was formed by a 32-level reactive-ion etching on a ZnSe substrate. Figures 7(a)

and 7(b) show the Fraunhofer diffraction intensity distribution of the measured vectorial
vortex, as well as its measured and predicted cross sections. As can be seen from these
figures, the dark central spot is obvious, as anticipated by Egs. (7) and (15). The measured
polarization ellipses of this field are shown in Fig. 7(c). As in Fig. 6, the L-line at the
boundary between different handedness is clearly shown. We have measured the polarization
states of both intensity rings to be left- and right-handed circularly polarized, for the inner and
outer rings, respectively. This result agrees with Eq. (7). As can be seen, the measured
polarization state is no longer alinearly polarized axially symmetric vectorial vortex. Hence, a
vectorial vortex with a Pancharatnam phase collapses upon propagation, as discussed in
chapter 2.

5. Conclusions

Two types of linearly polarized vectorial vortices were discussed and demonstrated. The first
type which had no Pancharatnam phase showed no angular momentum and maintained its
structure upon propagation. The second type had a Pancharatham phase of helical structure,
had orbital angular momentum, and collapsed upon propagation. From these results, we
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Fig 1A. Calculated real part of the instantaneous vector fields for several linearly
polarized vectorial vortices.
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conclude that the Pancharatnam phase of vectorial vortices is an essential property that
influences the propagation of such fields. The vectoria vortices were demonstrated using
discretely oriented space-variant subwavelength gratings. These devices have proven to be
able to produce high quality vectorial vorticesthat are also highly efficient.

Appendix A — Thetemporal evolution of the vectorial vortex

From a physical point of view, it is not the complex field of Eq. (1) that is important but the
real time dependent field given by,

Reﬂ E)exp(-i at)]=

m-n @,
0 2 (p+? m+n (1A)
COS( > (p—alj'

. (m-n_ g,
an + —
( 2 ¥ )

The temporal dependence indicates the existence of m+n lines of zero magnitude rotating at
2ad(m+n) radian per second. These zero lines are known as disclinations [4]. The temporal
evolution of these fieldsisillustrated in Fig. 1A for different values of mand n. Note in Figs.
1A (@) - (c) that the orientation of the field vector and the lines of zero magnitude obey Eq.
(1A). However, specia attention should be given to particular cases. First, if m = -n, no
rotating zero lines appear, but rather the field vectors vanish simultaneously, as can be seen in
Fig. 1A(d). The second case is m = n, which corresponds to a uniformly oriented linearly
polarized field. This case was vastly treated within the framework of scalar singular optics,
thusit is omitted from the current discussion. The temporal evolution is in agreement with the
concept of the Pancharatnam phase of the field. Equation (2) shows that the Pancharatham
phase advances the wave in a helical manner around the field axis, causing the location of
instantaneous zeros to rotate in time, as shown in Figs. 1A(a-c). In the particular case wherem
= -n, the Pancharatnam phase is zero, and thus the beating of the waves are synchronized in
time and the field vanishes simultaneously, as can be seen in Fig. 1A(d).
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