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Abstract:  Linearly polarized vectorial vortices are analyzed according to 
their Pancharatnam phase and experimentally demonstrated using a 
geometric phase element consisting of space-variant subwavelength 
gratings. It is shown that in the absence of a Pancharatnam phase, stable 
vectorial vortices that have no angular momentum arise. In contrast, if a 
Pancharatnam phase is present the vectorial vortices have orbital angular 
momentum and collapse upon propagation. 
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1. Introduction 

Singularities in scalar wave fields appear at points or along lines where the phase or the 
amplitude of the wave is either undefined or changes abruptly. An important type of 
singularity is the scalar vortex. A scalar vortex occurs where the phase of the scalar wave has 
a spiral structure around a singular point in the field [1]. Until now, research had focused 
mainly on this type of singularity [2]. However, if we allow the polarization to be space 
varying, vectorial vortices can be generated [3-7]. A vectorial vortex occurs around a point 
where a scalar vortex is centered in at least one of the scalar components of the vectorial wave 
field. Vectorial vortices can be found in the fields proposed by Pääkkönen et al. [8], at the 
center of vectorial Bessel beams [9] as well as at the center of a recently proposed 
phenomenon – rotating vectorial vortices [10]. It is expected that vectorial vortices will find 
application in advanced optical schemes such as phase mask coronagraphy [11], particle 
acceleration [12], and the tight focusing of light beams [13]. Vectorial vortices can be 
achieved by several means: liquid crystal devices [14], the intracavity summation of laser 
modes [15], interferometric techniques [16], and space-variant subwavelength gratings 
[9,10,17].  

This paper experimentally studies and analyzes linearly polarized vectorial vortices by use 
of geometric phase elements. It is argued that the Pancharatnam phase is a prominent 
structural feature of these fields, where the Pancharatnam phase is the argument of the inner 
product of distinctly polarized waves [18,19]. We show that linearly polarized vectorial 
vortices that have no Pancharatnam phase are stable upon propagation and have no angular 
momentum. However, if a Pancharatnam phase is present, then the linearly polarized vectorial 
vortices have orbital angular momentum and collapse upon propagation. The vectorial 
vortices are achieved by use of discretely oriented space-variant subwavelength gratings. 
These devices employ a geometric Pancharatnam phase that results from space-variant 
polarization state manipulation [20]. The structure and properties of linearly polarized 
vectorial vortices are reviewed in chapter 2. The design and fabrication of the space-variant 
subwavelength gratings used to generate these vectorial vortices are described in chapter 3. 
The gratings were realized on GaAs wafers and illuminated by CO2 laser radiation of 10.6μm 
wavelength. Chapter 4 describes the experimental demonstration verifying the theoretical 
analysis of the vectorial vortices generated by these space-variant subwavelength gratings. 
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This verification was achieved by measuring the full polarization state at the immediate outlet 
of the devices, and at their Fraunhofer diffraction. Our concluding remarks are presented in 
Chapter 5. 

2. Theory 

2.1 The structure of vectorial vortices and their Pancharatnam phase 

The most general polarization state of a linearly polarized vectorial vortex can be written as 

 ( ) ( ) LiinRiimE 2/exp
2

1
2/exp

2

1
00 ϕϕϕϕ −++= ,  (1) 

where m and n are integers, R  and L  are the right- and left-handed polarization unit 

vectors, respectively, and ϕ is the angle in the polar coordinate system (r,ϕ). Equation (1) is 
consistent with the definition of a vectorial vortex as defined above [10]. The linearity of the 
field is secured by having equal magnitudes of the circularly polarized components, while ϕ0 
represents arbitrary retardation. As linearly polarized vortices are the sole topic of this paper, 
the term "vectorial vortex" will henceforth serve as the abbreviation for "linearly polarized 
vectorial vortices". Figure 1 illustrates the polarization state of vectorial vortices with different 
values of m and n, with ϕ0 =0; the polarization ellipses have degenerated and thus appear as 
bars. Usually, vectorial singularities are studied by looking at the temporal evolution of the 
field [3,4], however for brevity's sake, we have consigned this discussion to Appendix A.  

An effective way to understand the structure of a field is to study its Pancharatnam phase 
[17]. The Pancharatnam phase between two distinctly polarized waves A  and B  is defined 

according to BAP arg=ϕ . Note that a π phase of indeterminate sign appears in ϕP across 

point where 0=BA . However, as these steps are of no special physical significance, they 

will be omitted from the following discussion altogether. Taking ( )0=ϕE  as a reference, 

the Pancharatnam phase of the vectorial vortex is given by 

 ϕϕϕϕ
2

))()0(arg(
nm

EEP

+=== .  (2) 

Therefore, linearly polarized waves at different azimuthal locations across the field are not 
only rotated with respect to each other according to (m-n)ϕ/2, [as calculated from Eq. (1)], but 
are also advanced or retarded according to Eq. (2).  

This result is easily observed by presenting Eq. (1) in the Cartesian basis explicitly as,                                    

m-n=-1 m-n=1 m-n=2 m-n=4 

Fig. 1. Azimuthal angle distribution of the polarization state for vectorial 
vortices with m-n equal -1, 1, 2 and 4 (from left to right). 
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The rotation is indicated by the Jones vector, and the Pancharatnam phase is equal to the 
phase inside the exponent. In appendix A, we show that the Pancharatnam phase is also in 
agreement with the temporal behavior of the field.  

Topological charges are an important aspect of scalar vortices as they are directly related  
to the orbital angular momentum of canonical vortices [21]. In this study, we attempt to 
associate a topological charge with the vectorial vortex. We show that there is a correlation 
between the topological charge of the vectorial vortex and its angular momentum. In scalar 
fields, topological charges are defined according to the number of 2π radians that the phase of 
the scalar wave accumulates along a closed path surrounding the singularity. The topological 
charge of the vectorial vortex is defined in the same manner, but uses the Pancharatnam phase 
instead of the scalar phase. Thus, 

 ∫=
C

PP dl ϕ
π2

1 , (4) 

where the integration path, C, encircles the phase singularity. We denote the topological 
charge of the vectorial vortex as a topological Pancharatnam charge. Applying Eq. (2) to Eq. 
(4), the topological Pancharatnam charge of the vectorial vortex is lP=(m+n)/2. To establish 
the connection between lP and the angular momentum of the vectorial vortex, let us first 
calculate the total angular momentum of the vectorial vortex as the sum of the orbital angular 
momentum of its scalar components. The spin angular momentum is canceled out as indicated 
by Eq. (1). This calculation results in a normalized angular momentum of, 

 
ω2

nm

P

J z += ,  (5) 

where P is the total intensity of the field and ω is the optical frequency. Comparing this result 
to the expression for the topological Pancharatnam charge of a vectorial vortex, we find, 
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Pz l

P

J = .  (6) 

Therefore, the topological Pancharatnam charge, with respect to the orbital angular 
momentum of vectorial vortices is analogous to the topological charge of scalar vortices.  

From Eq. (1), the Fraunhofer diffraction of a vectorial vortex is given by, 

 
( )[ ] ( )

( )[ ] ( )
⎪⎭

⎪
⎬
⎫

⎥
⎦

⎤
⎢
⎣

⎡
−

+
⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+=

∫

∫

−

−

LdrrzkrrJnii

RdrrzkrrJmii
z

ikzk
zrE

R

n
n

R

m
m

fh

0

0
1

0

0
1

''/'2/exp

''/'2/exp
2

)exp(
),,(

ϕϕ

ϕϕϕ
.  (7) 

 Here, z is the propagation distance, k is the wavenumber, and R corresponds to the radius of 
the finite aperture of the field. Equation (7) shows that the components of the vectorial vortex 
undergo different modulations as the distance z is increased. As a result, a vectorial vortex 
does not maintain its structure upon propagation. However, in the unique case where no 
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Pancharatnam phase is present, i.e., n = - m [see Eq. (2)], Eq. (7) reduces to, 
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In this special case, the vectorial vortex maintains its polarization structure upon propagation. 
From Eq. (7) and (8) we conclude that fields with Pancharatnam phases other than zero do not 
maintain their polarization structure upon propagation, while the polarization state of fields 
with no Pancharatnam phase is stable. 

2.2 Geometric phase elements 

Vectorial vortices are easily generated using discretely oriented space-variant subwavelength 
gratings. It is well known that when the period of a dielectric grating is smaller than the 
incident wavelength, only the zero diffraction order is propagating and all the other orders are 
evanescent. In this case, the grating behaves as a uniaxial crystal with the optical axes parallel 
and perpendicular to the subwavelength grooves [22-24]. By fabricating a subwavelength 
grating in which the groove orientation varies along the face of the element, a space-variant 
wave plate is realized. We have previously shown [25] that the field emerging from such a 
device is given by, 

 [ ]in
i

in
ii

yxin
i

yxout ERLeELReettEettE θθφφ 22)()(
2

1

2

1 −+−++= ,  (9) 

where 
inE  represents the beam impinging on the device and θ=θ(x,y) is the local orientation 

of the subwavelength grooves. tx, ty are the amplitude transmission coefficients for light 
polarized perpendicular and parallel to the subwavelength grooves, respectively, and φ is the 
retardation phase. Equation (9) indicates that the field emerging from a space-variant 
subwavelength grating comprises three components. The first maintains the original 
polarization state and phase of the incoming beam. The second is right-handed circularly 
polarized and has a phase modification of 2θ(x,y). The third has an orthogonal polarization 
direction and opposite phase modification with respect to the second component. Note that the 
magnitude of the different components is determined by the local birefringent parameters tx, ty 
and φ,  as well as by the incoming polarization state for the second and third components. The 
transmission of dielectric gratings is relatively high and the retardation φ  is primarily a 
function of the subwavelength grooves etching depth. Therefore, we consider devices with 
subwavelength grooves for which tx≈ty≈1 and φ  = π or π/2, i.e. perfect space-variant half and 
quarter wave plates.  

Let us consider a local orientation of the subwavelength grooves as, 

 
02

θϕθ += m  (m is an integer).  (10) 

The beam emerging from a space-variant subwavelength grating with this groove orientation, 
where θ0=φ/2, tx= ty=1, and φ =π, for linearly polarized illumination is,  

 [ ]LeReE imim
out

ϕϕ −+=
2

1 .  (11) 

This field resembles Eq. (1) for n = -m. Thus, a vectorial vortex with field vectors which has 
no Pancharatnam phase is produced. From the discussion in chapter 2.1, this vectorial vortex 
exhibits no orbital angular momentum and has beam-like propagation.  

Another possibility for generating vectorial vortices using space-variant subwavelength 
gratings is obtained once a circularly polarized plane wave impinges a device, acting as a 
perfect quarter wave plate, i.e., tx= ty=1 and φ =π/2, with subwavelength groove orientation 
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given by Eq. (10). In this case, if θ0=π/4 and the illuminating beam is left- handed circularly 
polarized, then according to Eq. (9) the emerging field is 

 [ ]LReE im
out += ϕ

2

1 . (12) 

This field resembles Eq. (1) for n = 0. This is a vectorial vortex with Pancharatnam phase of 
helical structure, thus ϕP=mϕ/2 as can be calculated from Eq. (2). From Eq. (5), this vectorial 
vortex has an orbital angular momentum of ħm/2 per photon. However, from Eq. (7), we find 
that it does not maintain its polarization structure upon propagation. Note, in case of m=±1 the 
central singularity is a generic feature of vectorial fields known as C-point [4]. In both cases, 
θ0 is of no special importance apart from the case of the space-variant quarter wave plate with 
m=2.   

In the case of vectorial vortices that are generated by space-variant subwavelength 
gratings, the Pancharatnam phase results from the space-variant polarization state 
manipulations and is therefore geometric in nature. This is best understood by viewing the 
polarization state manipulations involved in the formation of the vectorial vortices on a 
Poincaré sphere. A Poincaré sphere is a unit sphere for which the normalized Stokes 
parameters ŝ1, ŝ2, ŝ3 serve as rectangular coordinates [26]. In this representation, a specific 
polarization state is mapped to a point on the sphere, while polarization state transformations 
are represented by geodesic lines connecting the initial and final polarization states. Let us 
consider the geodesic triangle ABC of Fig. 2(a) using similar calculations to those performed 
by Aravind [24]. It can be shown that if a wave in a state A is in phase with a distinctly 
polarized wave B, and if A is also in phase with another wave at polarization state C, then the 
waves at states B and C are not necessarily in phase. In fact, the phase between them equals 
half the area of the geodesic triangle ABC and is therefore geometric in nature [27].  
Fig. 2(b) shows a mapping of the polarization state transformation of the vectorial vortex of 
Eq. (11) onto a Poincaré sphere. The incoming polarization state (point A on the sphere) as 
well as the emerging polarization states at different locations are linear with different 
orientations (points B and C on the sphere). In this case, the Pancharatnam phase between the 
states A and B, and A and C is zero. As the geodesic triangle ABC encompasses a null area, 
no geometric phase is obtained between the states B and C. 

The case of the vectorial vortex of Eq. (12) is depicted in Fig. 2(c). Here, the incoming 
wave (point A on the sphere) is left-handed circularly polarized, while the emerging field at 
different locations is linearly polarized with different orientations (points B and C on the 
sphere). It is easy to show (using Eq. (1) or Eq. (3) with n=0 and ϕ0=0) that in this case as 
well, A is in phase with B and with C. According to the geometric considerations given in 

Fig. 2. Mapping of the polarization state manipulation onto a Poincaré sphere. (a) In an 
arbitrary case, (b) for the formation of a vectorial vortex without a Pancharatnam phase, (c) 
for the formation of a vectorial vortex with a Pancharatnam phase. 
 

ŝ1 

ŝ2 

ŝ3 

(a) 

A 

C B 

(b) (c) 

A B C 
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Ref. 27, we find the area of the geodesic triangle ABC (shaded in the figure) to be mϕ 
stradians. Therefore, a geometric phase that equals half the area enclosed on the Poincaré 
sphere by the geodesic lines is added to the wave at C with respect to B. Comparing these 
results with Eq. (2), we conclude that vectorial vortices that are generated by space-variant 
subwavelength gratings have an entirely geometric Pancharatnam phase. 

3. Design and realization of subwavelength gratings for the generation of vectorial 
vortices 

In order to overcome the customary limitations of continuous space-variant subwavelength 
gratings [17], in our approach [25], the desired groove orientation of Eq. (10) is approximated 
by, 

                                  ( )[ ]0mod
2/),( θϕθ π += mFyx N

 (m is an integer).                                (13) 

The function FN( ) denotes a piecewise process that divides a desired groove orientation into 
N equal zones. The discontinuities in the subwavelength pattern unavoidably lead to 
diffraction. The efficiency of the first diffraction order is given by [25],  

                                                           
2

1 sin ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛=
N

N π
π

η .                                                         (14) 

This equation indicates that for 2, 4, 8, and 16 discrete steps, the first order diffraction 
efficiency is 40.5%, 81.1%, 95.0%, and 98.7%, respectively. As the first order represents an 

b 

d c 

a 

5μm 20μm 

10μm 2μm 

Fig. 3. Scanning electron microscope images (a) of a π-retardation device with a nominal 
etching depth of 5μm and m=3 (b) of a π-retardation device for m=4 (c) of a π/2- retardation 
device with 2.5μm nominal etching depth and m=3, (d) with higher magnification of the π/2-
retardation device. The local period of the depicted gratings is 2μm. 
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exact replica of our desired continuous field, an almost perfect device can be achieved by 
merely using N = 16 [25]. High-resolution laser lithography chrome masks as generated using 
Eq. (13) for θ0=π/4 and m = 1, 2, 3, 4 were fabricated. The masks were 10mm in diameter and 
had N =16 zones. A subwavelength period of Λ=2μm was chosen along with a fill factor of 
0.5 for use with  
10.6μm wavelength radiation. The masks were transferred by contact lithography to 500μm 
thick GaAs wafers and space-variant subwavelength gratings were achieved using the 
fabrication process described in Ref. 25. The nominal etching depths were 2.5μm and 5μm, in 
order to achieve the desired π/2 and π−retardation, respectively. As a final step, the backsides 
of the elements were applied with an anti-reflection coating. Figure 3 shows scanning electron 

m=-n=2 m=-n=3 m=-n=4 m=-n=1 

m=2, n=0 m=3, n=0 m=4, n=0 m=1, n=0 

(b) 

(c) 

(d) 

(a) 

Fig. 4. Measured intensity distributions for vectorial vortices imaged through a linear polarizer 
immediately behind the elements, (a) without Pancharatnam phase and (c) with Pancharatnam 
phase. (b), (d) Measured azimuthal angle distributions for the corresponding cases. 
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microscope images of the devices. Discrete changes in the groove orientation as well as the 
high aspect ratio and rectangular shape of the grooves are clearly observed. For a device with 
nominal retardation of π radians, we have previously measured the amplitude transmission to 
be tx = 0.74 and ty = 0.86, with actual retardation of φ  = 0.97π [25], thus high efficiency 
devices are formed using the prescribed process. Fig. 4: Measured intensity distributions for 
vectorial vortices imaged through a linear polarizer immediately behind the elements, (a) 
without Pancharatnam phase and (c) with Pancharatnam phase. (b), (d) Measured azimuthal 
angle distributions for the corresponding cases. 

4. Experimental results 

Vectorial vortices that do not have a Pancharatnam phase were obtained by illuminating the π-
retardation devices with 10.6μm linearly polarized light from a CO2 laser. Figure 4(a) shows 
the intensity distributions at the immediate outlet of the devices when imaged through a linear 
polarizer. The fringes indicate the rotation of the polarization ellipses according to Eq. (3) for 
n= -m. We have measured the polarization state distribution of the vectorial vortices using the 
four-measurement technique [28]. Figure 4(b) shows the azimuthal angle distribution. The 
rotation around the field axis is clearly observed. We have found the typical deviation of the 
azimuthal angle with respect to its desired value to be less than 2% (0.026 radians). The 
typical ellipticity of the emerging field was less than 0.07 radian. This result is comparable 
with the expected performance of a device with N=16, indicating the excellent ability of a 
space-variant subwavelength grating to control the polarization state of a beam. Vectorial 

(a) 
m=-n=2 m=-n=3 m=-n=4 m=-n=1 

(b) 

(c) 

N
or

m
al

iz
ed

 in
te

ns
ity

 

Fig. 5. (a) Measured intensity distributions at the Fraunhofer region for vectorial vortices 
without Pancharatnam phases. (b) Typical cross sections of the intensity distribution in (a) 
(crosses represent experimental measurements while solid lines represent calculations). (c) 
Measured azimuthal angle distributions of the vectorial vortices’ polarization states.     
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vortices having a Pancharatnam phase were obtained by illuminating the π/2-retardation 
devices with 10.6μm left-handed circularly polarized light from a CO2 laser. Figure 4(c) 
shows the intensity distributions at the immediate outlet of the devices imaged through a 
linear polarizer. In this case, the fringes indicate rotation of the polarization ellipses that is in 
agreement with Eq. (3) for n=0. Figure 4(d) shows the measured azimuthal angle in this case. 
Typical values for the deviation of the azimuthal angle and ellipticity, compared to their 
desired value, are similar to the former case, thus indicating the formation of high quality 
vectorial vortices.  

4.1 Fraunhofer diffraction of vectorial vortices without Pancharatnam phase 

The Fraunhofer diffraction of the vectorial vortices that do not have a Pancharatnam phase 
(i.e., n=-m) were obtained at the focus of a lens with 1m focal length. Figure 5(a) shows their 
measured intensity distributions. The annular intensity pattern that is predicted by Eq. (8) is 
clearly observed. Another way to understand this is to average the fields located on a circle 
surrounding the singularity and limiting the circle radius to 0, thus  

                                                   ∫→
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~
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,                                                     (15) 

where the field, E(r,ϕ), is calculated from Eq. (8). This average, in the presented case, results 
in Ẽ=(0,0)T, where T denotes transposition. Thus, the dark core is a result of destructive 
interference of the field at the center. This outcome is also predicted by Eq. (1), when 
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Fig. 6. (a) Measured intensity distributions at the Fraunhofer region for vectorial vortices with 
Pancharatnam phase, obtained with a π/2-retardation device. (b) Typical cross sections of the 
intensity distribution in (a) (crosses represent experimental measurements, while solid lines 
represent calculated values), (c) measured polarization ellipse distribution of the vectorial 
vortices. The colors indicate the different rotation directions (handedness) of the field. 
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considering conjugate scalar vortices embedded in both orthogonally polarized components of 
the vectorial vortex. Typical cross sections of the intensity distributions are given in Fig. 5(b). 
Good agreement between the experimental results and the theoretical analysis is obtained. 
Moreover, Fig. 5(c) shows the measured space-variant azimuthal angle of the beam’s 
polarization state at the Fraunhofer region. The close resemblance of the polarization states 
between the near- and the far-fields validates our conclusion that vectorial vortices that do not 
have a Pancharatnam phase maintain their structure upon propagation.  

4.2 Fraunhofer diffraction of vectorial vortices with Pancharatnam phase 

Fraunhofer diffraction of vectorial vortices that have a Pancharatnam phase were obtained at 
the focus of a lens with 1m focal length, and are shown in Fig. 6(a). In this case, n=0 and a 
bright spot at the center of the field is observed. The bright central spots are also shown in the 
typical cross sections of Fig. 6(b). These bright central spots (as well as the annular intensity 
rings) are anticipated from Eq. (7) for n = 0. This results from the constructive interference at 
the center of the field. The central spots’ polarization state can be found by applying Eq. (7) to 
Eq. (15), yielding LE ∝~ . The measured polarization ellipses of the far-field vectorial vortices 

are shown in Fig. 6(c). Different colors indicate different handedness of the field. At the 
boundary between handedness, there is a line of linear polarization known as an L-line [6]. At 
the center of the field, there are points of circular polarization known as C-points [7]. One can 
see that the polarization state is radically different from the polarization state of the beam 
emerging from the element. In other words, the polarization state of the propagated beam is 
not a linearly polarized axially symmetric vectorial vortex. Therefore the vectorial vortex 
collapses upon propagation, as discussed in chapter 2. Experimental evaluation of the central 
spot showed its polarization state to be left-handed circularly polarized, as anticipated from 
Eqs. (7) and (15). Good agreement between theory and experimental results, as can be seen 
from Fig. 6, is demonstrated. 

4.3 Fraunhofer diffraction of general vectorial vortex 

We have also demonstrated a vectorial vortex with m,n≠0as well as m≠-n, (see Eq. (1) that has 
a Pancharatnam phase, by combining a spiral phase element with a scalar topological charge, 
l, immediately behind the π-retardation device. In this case, a phase of lϕ is added to both 
components of the beam producing 
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Fig. 7. (a) Measured intensity distribution at the Fraunhofer region for a vectorial vortex with 
Pancharatnam phase, obtained with a π-retardation device of m=3 and a spiral phase element with 
a topological charge of l=2. (b) Typical cross-section taken from the intensity distribution in (a) 
(crosses represent experimental measurements, while solid line represents calculated values). (c) 
Measured polarization ellipse distribution of the vectorial vortex. The colors indicate the different 
rotation directions (handedness) of the field. 
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Equation (16) shows that any desired linearly polarized vectorial vortex can be obtained by 
combining a spiral helical phase element with a discretely oriented space-variant 
subwavelength grating-based device. The vectorial vortex was achieved experimentally by 
combining a spiral phase element with l=2 and a π-retardation device of m=3. The spiral 
phase element was formed by a 32-level reactive-ion etching on a ZnSe substrate. Figures 7(a)  

and 7(b) show the Fraunhofer diffraction intensity distribution of the measured vectorial 
vortex, as well as its measured and predicted cross sections. As can be seen from these 
figures, the dark central spot is obvious, as anticipated by Eqs. (7) and (15). The measured 
polarization ellipses of this field are shown in Fig. 7(c). As in Fig. 6, the L-line at the 
boundary between different handedness is clearly shown. We have measured the polarization 
states of both intensity rings to be left- and right-handed circularly polarized, for the inner and 
outer rings, respectively. This result agrees with Eq. (7). As can be seen, the measured 
polarization state is no longer a linearly polarized axially symmetric vectorial vortex. Hence, a 
vectorial vortex with a Pancharatnam phase collapses upon propagation, as discussed in 
chapter 2. 

5. Conclusions 

Two types of linearly polarized vectorial vortices were discussed and demonstrated. The first 
type which had no Pancharatnam phase showed no angular momentum and maintained its 
structure upon propagation. The second type had a Pancharatnam phase of helical structure, 
had orbital angular momentum, and collapsed upon propagation. From these results, we 

(a) m=2, n=0 (b) m=2, n=1 (c)  m=2, n=-1 (d) m=2, n=-2 
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Fig 1A. Calculated real part of the instantaneous vector fields for several linearly 
polarized vectorial vortices. 
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conclude that the Pancharatnam phase of vectorial vortices is an essential property that 
influences the propagation of such fields. The vectorial vortices were demonstrated using 
discretely oriented space-variant subwavelength gratings. These devices have proven to be 
able to produce high quality vectorial vortices that are also highly efficient.  

Appendix A – The temporal evolution of the vectorial vortex 

From a physical point of view, it is not the complex field of Eq. (1) that is important but the 
real time dependent field given by, 
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The temporal dependence indicates the existence of m+n lines of zero magnitude rotating at 
2ω/(m+n) radian per second. These zero lines are known as disclinations [4]. The temporal 
evolution of these fields is illustrated in Fig. 1A for different values of m and n.  Note in Figs. 
1A (a) - (c) that the orientation of the field vector and the lines of zero magnitude obey Eq. 
(1A). However, special attention should be given to particular cases. First, if m = -n, no 
rotating zero lines appear, but rather the field vectors vanish simultaneously, as can be seen in 
Fig. 1A(d). The second case is m = n, which corresponds to a uniformly oriented linearly 
polarized field. This case was vastly treated within the framework of scalar singular optics, 
thus it is omitted from the current discussion. The temporal evolution is in agreement with the 
concept of the Pancharatnam phase of the field. Equation (2) shows that the Pancharatnam 
phase advances the wave in a helical manner around the field axis, causing the location of 
instantaneous zeros to rotate in time, as shown in Figs. 1A(a-c). In the particular case where m 
= -n, the Pancharatnam phase is zero, and thus the beating of the waves are synchronized in 
time and the field vanishes simultaneously, as can be seen in Fig. 1A(d).  
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