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Section 1: Simulation and calculation of Kerr rotations and PSHEs  
To calculate the magneto-optical responses for a lattice of nickel nanoantennas, we conduct the 

simulations using the finite-difference time-domain (FDTD) method. Supplementary Fig. 1 

depicts a unit of the simulation geometry. The circular nickel nanoantenna with a radius R stands 

on a silica substrate. The side length of the unit is p = 400 nm, and periodic boundary conditions 5 

are employed in the x and y directions. The height of the nanoantenna is h = 170 nm. The 

magneto-optical effects are introduced by the magnetization-controlled dielectric tensor of the 

ferromagnetic medium. The external magnetic field B is applied in the z direction, i.e., a polar 

configuration. Correspondingly, the dielectric tensor of nickel is: 
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where 2n=ε ; n=1.9-4i is the complex refractive index of nickel at a wavelength of 632.8 nm. 

The magneto-optical parameter is ( ) 3
8.5 6.5 10Q i

−= + ×  [1], and M is a normalized magnetization 

that changes between − 1 and 1. Before magnetization (M = 0), there are no nondiagonal 

components for the dielectric tensor. Once magnetized, the anti-symmetric nondiagonal 

components emerge, and macroscopically, magneto-optical effects occur. 15 

      We calculated the reflection coefficients of the structure as a function of the nanoantenna 

radius R by impinging an x-polarized plane wave onto the structure at a normal angle with M = 1. 

The results are depicted in Fig. 2a of the main text. Generally, the reflection coefficients of the 

magnetized structure are described by a Jones matrix, which connects the incident and reflected 

waves by 20 

 
xx xyx R x I

y R y Iyx yy

r rE E

E Er r

, ,

, ,
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Here, 
x I

E ,  and
y I

E , are the incident electric fields for x and y polarizations, and 
x R

E ,  and 
y R

E , are 

the reflected fields. The cross-polarized components 
xy

r  and 
yx

r , generated by the magneto-

optical effects, are very small compared to 
xx

r  and 
yy

r . Note that  we have  ,xy yx yy xxr r r r= = −  as 

the symmetric properties of the dielectric tensor [2]. For different radii R, there is also a resonant 25 

phase [ ]0 xx
rArgφ = . The Kerr rotation is defined as /K xy xxr r = − Reθ , and the Kerr ellipticity is 

/K xy xxr r = − Imξ . The strength of the cross-polarization is linear to the magnetization M, 

namely, 
xy

r M∝ . Therefore, we also have 
K

Mθ ∝ . For an opposite magnetization of M, the 

sign of Kθ  flips, indicating an anti-symmetric property: ( ) ( )K KM M= − −θ θ . In this work, we 

concentrate only on the phase effect; therefore, the Kerr ellipticity is omitted to simplify the 30 

analysis. Using these approximations, the Jones matrix can be rewritten as 
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for 1K <<θ . Furthermore, we can transform the Jones matrix into the photonic spin basis σ±  via 

1

σ
J UJU−= , resulting in  
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Here [ ]1 ; 1 2i iU /= −  is a unitary conversion matrix. From the expression of 
σ

J , we 5 

have Ki
e

∓

θσ σ±
± →  for incident spin states σ±  reflecting from the structure. Therefore, a 

geometric phase, g K±=φ σ θ , is imparted to the flipped spin state due to the magneto-optical 

effect, i.e., the Berry-Zak phase. Compared to the geometric phase arising from anisotropic 

nanoantennas with space-variant in-plane orientations [3] , the Berry-Zak phase in Eq. (S1) is 

from the time-reversal symmetry breaking of the light-matter interaction, rather than the spatial 10 

symmetry breaking. The magnetic field also provides a dynamic approach to tailor the strength 

of the geometric phase. 

      Once we have obtained the magneto-optical responses of the nickel nanoantennas from the 

FDTD simulation, we can sample the nanoantennas in a lattice with a random function f (x, y), 

composing a disordered metasurface with spatial fluctuation of the meta-atoms (nanoantennas). 15 

Specifically, we set ( ) ( )0R x y R R f x y∆, ,= + ⋅ . Here, (x, y) are the locations of the 

nanoantennas, R0 is the average radius, R∆  is the range of fluctuation, and f (x, y) is a random 

function with a flat probability distribution, as depicted in Supplementary Fig. 2. At each lattice 

point of the metasurface, the reflection and Kerr rotation can be derived from Fig. 2a in the main 

text via the radius R of the meta-atom. By this means, the near field and momentum space of 20 

light reflecting from the disordered metasurface can be calculated via the Huygens Principle and 

Fourier transformation, respectively. 

      For a specific realization of f (x, y) and a magnetization of M, we obtain the corresponding 

resonant phases ( )0 x y,φ  and the geometric phases ( ),g K x y±=φ σ θ  of light reflected from the 

disordered metasurface. The spin-dependent intensity distributions of light ( ),x yI k k
±σ  in the 25 

momentum space ( ),x yk k are calculated by Fourier transformation. Note that in this work, ( ),x yk k  

are always normalized by the wavenumber of the incident light, 2
I

k /π λ= . The spin shift of 

light in the momentum space, i.e., the PSHE, is defined as 
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in the x and y directions, respectively. The PSHE is also indicated by a nonzero S3 distribution 
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      Examples of the calculation are shown in Supplementary Fig. 3 for 1D disordered 

metasurfaces with ( ) ( )0R x R R f x∆= + ⋅ . Two different realizations of f (x) are depicted in the 5 

left (a) and right (b) panels of Supplementary Fig. 3. The disordered resonant phases ( )0 xφ  are 

spin-independent; hence, they do not cause any photonic spin shift. The PSHE arises from the 

spin-dependent geometric phases. Obviously, for different realizations of f (x), we obtain distinct 

spin shifts. To achieve a larger PSHE, R0 should be in the resonant region to introduce a stronger 

fluctuation of Kerr rotations and geometric phases. Therefore, in our fabrications, we chose R0 = 10 

115 nm, which is located in the resonant region, as we simulated. To demonstrate the resonant 

effect, we measured the reflection spectrum of the fabricated 1D disordered metasurface for 

wavelengths ranging from 600 nm to 700 nm, as shown in Supplementary Fig. 4. The decrease in 

the reflection around the wavelength of 632.8 nm (the working wavelength for the PSHE) 

indicates a resonant effect.  15 

Section 2: Theory of weak measurement for magnetized disordered metasurfaces 

The weak measurement setup shown in Fig. 3a of the main text is a typical approach to detect the 

PSHE. The incident beam is spatially confined, i.e., a Gaussian beam, which can be decomposed 

into a spectrum of plane waves with different directions (kx, ky). The off-axis illumination will 

introduce a background spin Hall effect (in this work, we simply call it a background effect to 20 

distinguish it from the PSHE we are interested in) [4, 5]. Therefore, it is crucial in the 

measurement to distinguish the background effect from the PSHE purely arising from the spatial 

fluctuation of the magneto-optical effects. Akin to Ref [4], here we show that for a Gaussian 

beam, the wavevector dependent polarization rotation upon reflection at the metaurface. The 

eigenstates of polarization for an off-axis beam impinging onto a metasurface are P and S, which 25 

correspond to the cases with the electric field in and out of the plane of incidence, respectively 

(Supplementary Fig. 5a). Note that P and S are only the eigenstates of a single plane wave, 

namely, for the center wavevector (kI) of a Gaussian beam. For different plane wave component 

of the Gaussian beam, different eigenstates ,p s
� �

are attached (Supplementary Fig. 5a). 

Considering the geometric constrains, there is a relation between P, S and ,p s
� �

 for an arbitrary 30 

plane wave component: 
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 cot , coty yp k s s k p= − = +P S
� � � �

α α , (S2) 

with α  being the incident angle and yk  being the normalized wavenumber denoting the direction 

of the plane wave component. Note that for reflected wave, α should be replaced by −α [6,7]. On 

the other hand,  ,p s
� �

 states are also combinations of their associated spin states 

 ( )1
,p s

i
+ − + −= + = −

� �
σ σ σ σ . (S3) 5 

When a P-polarized beam reflecting from an interface, each plane wave reflects independently 

with its own reflection coefficient. In the case of a homogeneously magnetized metasurface, we 

have 
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Here, 
P

r  and 
S

r  are the homogeneous reflection coefficients of light for the p and s polarizations, 10 

respectively, and the component 
PS

r  is the cross-polarization generated from the homogeneous 

magneto-optical effect. Here we considered the approximation that both ky and SPr are small 

quantities compared to 
P

r , so the term containing y SPk r is omitted. Up to now, the background 

effects have shown. They arise from the cross polarization generated from different plane waves 

ky in the reflection.  15 

      The PSHE induced by the disordered magneto-optical effects has a different origin from the 

background effects: it is induced by the space-variant geometric phases. Therefore, in this effect, 

the eigenstates of polarization are the spin states, rather than p
�

 and s
�

. Approximately, this 

PSHE is independent from different plane wave component in the Gaussian beam.  Considering 

only a spin shift in the y direction,
y

δ , we have 20 
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Note that /w Ik k D= λ  is the diffraction limit. Combing Eq. S3 and Eq.S4, we have  
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Now taking into account both the polarization changes in the reflection and the PSHE from the 

disordered magneto-optical effects by combining Eq. (S2)–Eq. (S4), we have 
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Here, the origin of 
y

δ  is the disordered magneto-optical effects. That is, ( )y PS P
r r∆~ /δ , which 5 

denotes the spatial fluctuation of 
PS P

r r/ . The effects in the weak measurements from different 

sources are presented by the three terms in the S state in Eq. (S5). Specifically, the first term,

( )cot
y S P

k r r− + α , is the background effect from the off-axis reflection from a homogeneous 

surface; the second term, PSr , is the effect from the homogeneous magneto-optical effect; and the 

third term, 2/
P y y w

ir k k− δ , is the PSHE that we are interested in–one purely arising from the 10 

spatial fluctuation of magneto-optical effects. As we will show, an important approach to 

distinguish the three different effects is to exploit different symmetric properties of these effects 

in the weak measurement via changing the magnetic field.     

      The electric field distribution after the postselection is 

 ( )
( ) 2

sin 0 1 0
,

cot0 cos 0

P

yy

y S P PS P y

w

r

E k
k r r r ir ki
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 
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β
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 , (S6) 15 

and the corresponding intensity distribution is ( ) ( )
2

,y yI k E k=β β . Rewriting the expression in the 

two-dimensional case, we have the centroid of the beam  
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As we mentioned before, it is very important to study the behavior of the curves by changing the 

magnetic field. Therefore, we compare ,x yk
′
β

with the one obtained from zero magnetization, 

resulting in a modified expression: 

 
( )

( )
, 0

, ,

0

,

,

x y x y x y
M

x y x y

x y x y
M

k I k k dk dk
k k

I k k dk dk

=

=

′= −
∫
∫

β

β β
β

, (S7) 

where ( )
0

,x y
M

I k k
=β  is the intensity distribution from zero magnetization.  5 

      Now, we show three different examples of the theoretical curves of ,x yk
β

defined by Eq. 

(S7) with opposite magnetizations M = ±1. The first is a homogeneous surface without any 

magneto-optical effect, that is, 0PSr =  and ( )/ 0PS Pr r∆ = . The results are shown in Supplementary 

Fig. 5b. Clearly, without the magneto-optical effect, there is no difference between the cases 

before and after the surface is magnetized, and the curves are always zero. This means, that the 10 

background effect from the off-axis illumination is eliminated by this means. The results from a 

surface with homogenous magnetization ( 0PSr ≠  and ( )/ 0PS Pr r∆ = ) are shown in Supplementary 

Fig. 5c. Here, the influence of the magneto-optical effect on the weak measurement is indicated 

by the nonzero yk
β

, which arises from PSr  of the magneto-optical effect. Note that 

, 1 , 1y yM M
k k

=− =
≈ −

β β
 due to the symmetric property ( ) ( )PS PSr M r M= − − . In addition, there is a 15 

symmetric behavior with respect to β, y yk k
−

≈
β β

, for each magnetization. The results of the 

surface with spatially fluctuating magneto-optical effects are shown in Supplementary Fig. 5d. 

We observe an anti-symmetric behavior with respect to β, y yk k
−

≈ −
β β

 , which is different 

from the previous cases. In fact, in this weak measurement, the amplified PSHE is  

 , , ,δx y x y x yA k k
−

= −β β β
, (S8) 20 

with Aβ  being the amplification factor. Therefore, only in the third case (Supplementary Fig. 5d) 

do we expect a nonzero PSHE, as 0y yk k
−

− ≠
β β

. The exact expression of Aβ  can be derived 

from Eq. (S6). However, experimentally unknown parameters such as 
P

r , 
S

r  and 
PS

r are 

generally involved, making it unrealistic to evaluate the real spin shift from Aβ . Fortunately, 

there is a good approximation of 2 / tanA A≈ =β β β  for 
C

β β> , where the approximated 25 

amplification factor is free from the unknown parameters. Therefore, by choosing a proper β 

value and using Eq. (S8), the real spin shift can be evaluated. The 
C

β  value can be determined in 

the experiment via , , ,δ / /x y x y x yA A k k A
−

 
= − 
 β

β β ββ
, because for 

C
β β> ,
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( ), , , ,δ / / δx y x y x y x yA A k k A
−

= − ≈β β ββ β
. Examples of the theoretical curves are shown in 

Supplementary Fig. 6, which are in agreement with the experimentally observed curves in Fig. 

3e of the main text.  

Section 3: The hystereses of PSHEs  

For ferromagnetic materials such as nickel, the magnetization M does not respond linearly to the 5 

external magnetic field B. For instance, when the external magnetic field B abruptly disappears, a 

remnant magnetization still exists. In general, the magnetization of the ferromagnetic materials 

under a certain magnetic field can be different depending on the history of the magnetic field 

evolution, a phenomenon known as the hysteresis effect. Here, we demonstrate the hystereses of 

the PSHEs from the disordered metasurfaces of ferromagnetic meta-atoms, as shown in 10 

Supplementary Fig. 7. The measurements are carried out starting with B = 0; then, B is increased 

in steps by 25 mT until reaching 100 mT. Next, the magnetic field B decreases to the maximum 

in the opposite direction, -100 mT, and so on. The revolution of the magnetic field is depicted by 

the arrows in Supplementary Fig. 7. The measured hystereses of PSHEs that arise from the 

space-variant magneto-optical effects are shown by the dots for the examples of 1D and 2D 15 

disordered metasurfaces in Supplementary Fig. 7a and b, respectively. Note that distinct 

behaviors of the hysteresis are observed due to the potentially complicated magneto-optical 

responses of different meta-atoms. As a comparison, we also measure the hysteresis of the PSHE 

from a homogeneous nickel film (Supplementary Fig. 7c). The observed PSHEs are much 

weaker, and almost swallowed up by the system noise. 20 

Section 4: The magnetic-controlled optical vortex pairs  

In solid-state systems, the topological Hall effect (THE) arises from the nontrivial interaction 

between electrons and a media of space-variant magnetization [8–11]. Particularly, when an 

electron encounters a nanoscale magnetic topological defect such as a skyrmion, THE also 

occurs. This phenomenon can be utilized to detect nanoscale defects by measuring the deflection 25 

of electrons. 

      For the disordered ferromagnetic metasurface, the PSHE arises from the space-variant 

magneto-optical effect, which is very similar to the space-variant magnetization for electrons. 

Accordingly, there should also be a similar spin shift of light related to the optical topological 

defects. To demonstrate this, we calculated the near field of 2D disordered metasurfaces using 30 

the Huygens Principle. That is, each meta-atom is considered as a spin- and magnetization-

dependent point source emitting the electromagnetic wave into the near field of the metasurface 

as ( ) ( )( ) ( )0 0, exp , exp /
xx I

r x y i x y ik r r⋅φ , where 
I

k is the wavenumber and 0r  is the distance 

between the calculation area and the point (x, y) in the metasurface. Here ( ),
xx

r x y  and ( ),x yφ  
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are extracted from the FDTD calculation as mentioned in Section 1. We propagate the phase 

distribution ( ) ( ) ( )0,  ,  ,
g

x y x y x y= +φ φ φ  for approximately one wavelength above the 

metasurface and the calculated phase and intensity distributions for incident light in the σ+  

state are shown in Supplementary Fig. 8b-d, with different external magnetic fields (in the 

calculation, Supplementary Fig. 8b to d correspond to M = –1, 0 and 1, respectively). We 5 

obtained subwavelength-scale optical vortex pairs (VPs)–pairs of optical phase singularities with 

opposite topological charges–which are controlled by the magnetization. In the intensity 

distributions, the VPs correspond to the dark spots due to the rapid phase change in the 

subwavelength scale, i.e., the superoscillation of the optical field. The emergence of magnetic-

controlled VPs is related to the PSHE, providing potential applications for detecting topological 10 

nanostructures via the spin shift of light. In the experiment, we fabricated a 2D disordered 

metasurface (Supplementary Fig. 8a) and measured the near-field intensity distributions of it 

under different external magnetic fields, as shown in Supplementary Fig. 8e-g. The change in the 

near-field intensity distributions, especially the variance of the dark spots, indicates the evolution 

of VPs under the change in the external magnetic field.  15 

Section 5: The stochastic behavior of the PSHE 

The stochastic behavior of the PSHE is studied by calculating the resulting spin symmetry 

breaking from numerous disordered metasurfaces with different realizations of the random 

function ( )f x, y . For simplicity, we start with 1D disordered metasurfaces of random functions 

( )f x to obtain important insight. In the statistical calculation, we assume that each metasurface 20 

has a size of D D× , with N N×  meta-atoms arranged in a square lattice with a side length of p = 

D/(N-1). By default, the incident beam has the same size as that of the metasurface. The 

geometric phases (here, we consider only the values for σ+ ) from the metasurfaces are 

described as ( ) ( )g gx f x= ∆φ φ , where g∆φ  is the fluctuation range. The statistical properties of the 

PSHEs are entirely determined by three parameters: D, p, and g∆φ . Practically, g∆φ is further 25 

determined by R (x) of the meta-atoms and the magnetization M. However, in the calculation, we 

can assume some small value of g∆φ  to obtain the basic properties of the effects, without loss of 

generality.  

      In the statistical calculation for the disordered metasurfaces, we found a linear correlation 

between the spin shift 
x

δ  and the average local geometric phase gradient
g

K ( Supplementary 30 

Fig. 9a). Here, 
g

K  is defined as 
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( ) ( )
( ) ( )

1
1

11

1

1

1

N
g i g i

g N gi

g g N

i

x x

x xp
K x

D
/

φ φ

φ φ
φ

−
+

=
−

=

−

−
= ∂ ∂ = =

∑

∑
 , (S9) 

with 
i

x ip=  being the location of the i-th meta-atom along the x axis. The probability 

distribution of 
x

δ  is a Gaussian function, with a standard deviation of 
x

∆δ (Supplementary Fig. 

9b). On the other hand, the probability distribution of 
g

K  is a triangle distribution with a 

standard deviation of 
g

K∆  (Supplementary Fig. 9c). This particular type of probability 5 

distribution can be demonstrated from Eq. (S9). Since the geometric phases on the boundaries–

( )g N
xφ  and ( )1g

xφ –are random numbers obeying a flat distribution, as depicted in 

Supplementary Fig. 9d. The difference between them, 
g

K D , is also a random number. By 

calculations, 
g

K D obeys a triangle distribution, as shown in Supplementary Fig. 9e, and there is 

a simple relation between 
g

K∆  and g∆φ : 
g g

K D∆ ∆ /φ∝ . 10 

      Since 
x

δ  and 
g

K  are linearly correlated, we also have
x g

K∆ ∆δ χ= , with χ  determined by 

p. Combining all the relations, we obtain  

g

x
D

∆
∆

φ
δ ∝ . (S10) 

Equation (S10) describes the basic behavior of 
x

∆δ , which is proportional to the spatial 

fluctuation of the geometric phases and inversely proportional to the size of the metasurface. 15 

Therefore, a nonzero 
x

∆δ  occurs only in a spatially-bounded system with a spatial fluctuation of 

geometric phases, which can be generated from a wide range of fluctuation effects in physics. 

For the metasurfaces composed of circular ferromagnetic meta-atoms with space-variant radii, 

we have ( ) ( )g K
x xφ θ= , which is determined by M and R(x). Specifically, in the resonant region 

shown in Fig. 2a of the main text, 
K

θ  changes linearly with R. Therefore, we have   20 

x

M R

D

∆
∆δ ∝ . (S11) 

Therefore, the fluctuation (especially for nanoscale fluctuations) of meta-atoms can be evaluated 

by measuring the standard deviation of the probability distribution of PSHEs from Eq. (S11). 

These conclusions can also be generalized for 2D disordered metasurfaces.  
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Section 6: Estimation of the standard deviation of PSHE from limited number of statistical 

measurements 

The calculated Gaussian distribution of the PSHE is realized by numerous different disorders 

(>10
4
). However, the number (q) of samples with different disorders is experimentally limited. 

Therefore, the estimated standard deviation from q measurements, q∆δ , has some uncertainty. 5 

We call q∆δ  an estimation of the standard deviation for q∆δ →∞ (for simplicity, it is noted as ∆δ ). 

The standard deviation of q∆δ , ( )q∆ ∆δ , divided by ∆δ ,  is a function of q [12]: 

 
( )

( )

( )

2

1

212

12 2

2

q

q

qq

qq

Γ
∆ ∆ Γ

∆ Γ
Γ

/

/

δ

δ

  −        −
 = ⋅ −
  −      

. (S12) 

Here, ( )Γ ⋅ denotes the gamma function. The curve in Supplementary Fig. 10 shows ( )q∆ ∆ ∆/δ δ as 

a function of q. The dots are simulated results by repeating the statistical calculation for many 10 

times (10
4
), with each time conducting q different disorders and resulting in a value of q∆δ . For 

q = 30, ( ) 0 13
q∆ ∆ ∆/ .δ δ ≈ . Therefore, for the q = 30 statistical measurement, the estimated 

standard deviation of the PSHE should locate in the region of [ ]1 0.13,1 0.13 ∆δ− + , which is the 

blue area in Fig.4g of the main text. 
 15 
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Supplementary Fig. 1. Illustration of the unit structure for simulation. A circular 

nickel nanoantenna sits on a fused silica substrate. The shown structure is a unit of a 

square lattice. In the simulation, periodic boundary conditions are applied to the sides. 5 

Light impinges onto the structure from the z direction, and the magnetic field is applied in 

the z direction.  
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Supplementary Fig. 2. The probability distribution of the random function f (x, y). 

At each location (x, y), f(x, y) is a random number falling in the range [-1, 1] with an 

equal probability. 
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Supplementary Fig. 3. The Berry-Zak phase and PSHE from disordered 

ferromagnetic metasurfaces.  The calculated resonant phases ( )0 xφ  and geometric 

phases ( ) 
g

xφ  of 1D disordered metasurfaces with different distributions R (x) (a and b). 

The orange and blue bars are the geometric phases obtained with M = 1 for σ+  and5 

σ− , respectively. The bottom panel depicts the S3 distributions before and after the 

metasurface is magnetized.  
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Supplementary Fig. 4. The measured reflection spectrum of a disordered 

metasurface. The average radius of the meta-atoms R0 = 115 nm, and the range of radius 

fluctuation ∆R = 10 nm.  
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Supplementary Fig. 5. Theoretical curves of the weak measurements for different 

cases. a, Different plane waves in the incident beam, and eigenstates of polarizations. b-

d, The modified curves yk
β

in the weak measurement for light reflecting from a 5 

homogeneous surface without the magneto-optical effect (b), a surface with a 

homogeneous magneto-optical effect (c), and a surface with space-variant magneto-

optical effects (d). 
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Supplementary Fig. 6. The approximated amplification factor in the weak 

measurement. a, The theoretical amplified PSHE as a function of β . In the shaded 

regions, the approximation A A≈β β  is valid, and the PSHE can be evaluated from the 

relation ( )δ δ / /y yA A k k A
−

≈ = −β β ββ β
.  b, The theoretical curve of ( ) /y yk k A

−
− ββ β

 as a 5 

function of β . The dashed line denotes the spin shift, δ . 
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Supplementary Fig. 7. The measured hystereses of the PSHEs. a-c, The measured 

PSHEs as a function of the external magnetic field for  1D (a) and 2D (b) disordered 5 

metasurfaces and a nickel film (c). The pink dots denote the results measured from B = 0 

to B =100 mT. The red dots denote the results measured from B = 100 mT to B = -100 

mT. The blue dots denote the results measured from B = -100 mT to B = 0. 
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Supplementary Fig. 8. The magnetic-controlled formation of VPs in the near field of 

2D disordered metasurfaces. a, The sketch of the experimental setup for measuring the 

near field of the metasurface. The SEM for a 2D disordered metasurface is shown. b-d, 5 

The calculated near-field distributions of a 2D disordered metasurface for different 

magnetizations M = − 1, 0, and 1, respectively. Top panel: the zoomed-in (marked by the 

white squares) phase and intensity distributions. The VPs are nanoscale optical 

topological defects with a pair of opposite phase singularities. e-g, The measured 

intensity distributions of the 2D disordered metasurfaces for different external magnetic 10 

fields. The insets depict the details of the magnetic-controlled dark-spot intensity 

changes. The blue curves are intensity distributions on the cut lines. The valleys on the 

curves indicate the defects. 
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Supplementary Fig. 9. The statistical probabilities of the PSHEs. a, The linear 

correlation between 
x

δ  and 
g

K . b and c, The probability distributions for 
x

δ (b) and 
g

K

(c). The data are calculated from 10
4
 disordered metasurfaces with different realizations 5 

of the random function f (x). The parameters for each metasurface are D = 21 λ , p = 0.6

λ , and 3
10g

−∆ = ×φ π . The curve in (b) is a fitted Gaussian function. d, The calculated 

probability distribution of ( ) ( )g gx f x= ∆φ φ . e, The calculated probability distribution of 

g
K D , defined as ( ) ( )1g N g

x xφ φ− . Both ( )g N
xφ  and ( )1g

xφ  obey the flat probability 

distribution in (d). 10 
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Supplementary Fig. 10. The uncertainty of the estimated standard deviation from a 

statistical measurement with a number of q disorders. The curve shows the theoretical 

values obtained from Eq. S12. The dots are calculation results from Monte Carlo 

methods. Specifically, each dot is obtained by repeating statistical calculations for 10000 5 

times, with each time conducting a number of q different disorders resulting in a value of 
q∆δ . 

 




