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This supplementary information consists of 11 sections in support of the main body of the text. 

The contents of the sections are listed below: 

1. Fabrication of sample 

2. Experimental setup 

3. Principle of Berry-phase defective PhC 

4. Raman spectra of WSe2 monolayer 

5. Photonic Rashba effect from valley excitons 

6. Geometric phase from circular dipole 

7. Spin-split spots from coherent dipole sources 

8. Photonic Rashba effect from QDs 

9. Principle of Kagome-hexagonal Berry-phase defective PhC 

10. Photonic Rashba effect from QDs incorporated in Kagome-hexagonal Berry-phase 
defective PhC 

11. Chiral modes from conventional GPM without PhC slab  
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Section 1: Fabrication of sample 

 
Supplementary Fig. 1 | Fabrication processes of the sample. a, Preparation of the poly-Si and 
HSQ films above the SiO2 substrate. b, Fabrication of the HSQ mask. c, Etching of the uncovered 
poly-Si film. d, Removal of the HSQ mask. e, Incorporation of the QDs or WSe2 monolayer. 
Detailed descriptions can be found in Fabrication Section of Methods in the main text. 
 
 
Section 2:  Experimental setup 

 
Supplementary Fig. 2 | Schematic of the experimental setup. LP, linear polarizer; SPF, short-
pass filter; BPF, bandpass filter; QWP, quarter-wave plate; EMCCD, electron multiplying charge-
coupled device. The cut-off wavelength for the short-pass filter is 650 nm. The focal lengths for 
all lenses are f = 10 cm. In the measurements, five different bandpass filters with central 
wavelengths of 700 nm, 720 nm, 740 nm, 760 nm, and 790 nm are employed, and the half-
maximum bandwidths for them are 10 nm. Detailed descriptions can be found in Measurement 
Section of Methods in the main text. 
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Section 3: Principle of Berry-phase defective PhC 

Defect band 

As demonstrated in the main text, the defect band for the Berry-phase defective PhC (green dots 
in Supplementary Fig. 3a) is attributed to a hopping mechanism between neighboring defects, 
whereby the Berry phase defect mode with space-variant local field distributions is formed (see 
Supplementary Fig. 3b for its field distribution in a complete unit cell). For comparison, we also 
calculated the defect band for a defective PhC with all the defects possessing the same orientation 
θ(x,y) = 0, as shown by the orange dots in Supplementary Fig. 3a. It is noticed that the defect bands 
for these two cases are identical, which reveals that the hopping effect is determined by the 
subwavelength period of the defect lattice, irrespective of the specific orientations of the defects. 
The identical defect band for two orientation profiles also indicates that the defect band is robust 
against the orientation disorder in fabrication. Other disorders in fabrication, such as the small size 
variation, only contribute to a small wavelength shift of the wide defect band (wavelength 
range~20 nm), which has a negligible influence on the overlap between the defect band and the 
broadband PL (~100 nm). 

The defect band for the Berry-phase defective PhC (Fig. 2b) is separately fitted by the 

dispersion relation 1 cos( )KRω κ∝ +  along M-X and M-Γ directions with coupling factors κ1 = 

0.019 and κ2 = 0.013, respectively. Here, ω denotes the frequency and K denotes the wavenumber 
of the defect band in the first Brillouin zone. The stronger hopping effect along the M-X direction 

is attributed to a shorter distance between neighboring defects in this direction ( 1 2/ 1 / 2R R ≈ ). 

The strength of the hopping effect can be controlled by changing the lattice constant of the square 
lattice: the smaller the defect lattice constant, the stronger the hopping effect, as revealed by the 
coupling factors under different lattice constants (Supplementary Fig. 3c). Here, the orange and 
blue dots correspond to coupling factors along M-X and M-Γ directions, respectively.  

 



5 
 

Supplementary Fig. 3 | Defect band originating from hopping effect. a, Calculated defect bands 
for Berry-phase defective PhC (θ(x,y) = πx/6a, orange dots) and reference defective PhC (θ(x,y) = 
0, green dots). Except for the defect band for the reference structure, other contents are the same 
as Fig. 2a. b, Intensity distribution of the in-plane electric field at M point of the defect band in a 
complete unit cell. c, Fitted coupling factors under different lattice constants. The orange and blue 
dots correspond to coupling factors along M-X and M-Γ directions, respectively. 
 

Propagation of photons via hopping 

To demonstrate the propagation of photons through neighboring defects via hopping, we simulated 

a finite square PhC slab (12 × 12 unit cells) embedded with six space-variant nanoantennas, 

wherein a single x-oriented dipole is utilized to excite the structure at one of the defects 

(Supplementary Fig. 4a). The emerging field distribution at the wavelength of the defect mode 

demonstrates the hopping effect; that is, defect modes supported by defects away from the source 

are also excited via coupling between neighboring defects, which gives rise to the Berry phase 

defect mode. As a reference, no hopping effect and Berry phase defect mode are observed in the 

absence of the PhC slab, as shown in Supplementary Fig. 4b. 

 
Supplementary Fig. 4 | Hopping effect and Berry phase defect mode. a, Intensity distribution 
of the in-plane electric field for a finite square PhC slab embedded with space-variant 
nanoantennas as defects. b, Similar to a without the PhC slab. The dipole emitters are indicated by 
the green arrows. These distributions are obtained at the wavelength of the defect mode. 
 

PL enhancement factor 

Here, we calculated the enhancement of emission from WSe2 monolayer that is incorporated in the 

Berry-phase defective PhC. The PL enhancement factor <EF>1 is defined as the product of the 

excitation efficiency η and the Purcell factor FP at the monolayer plane, which is assumed to be 1 

nm above the top surface of the nanostructures. Specifically, the excitation efficiency is determined 

by the field enhancement of the pump beam as η = |E||/E0|2, in which E0 and E|| are the electric field 
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amplitudes for the incident pump beam and the resultant in-plane near field of the nanostructures, 

respectively. Here, only the in-plane electric field components are considered because the PL in 

the WSe2 monolayer originates from in-plane valley excitons. In the calculation, an x-polarized 

plane wave (λp = 533 nm) normally impinges onto the Berry-phase defective PhC, and the obtained 

excitation efficiency in one of the unit cells is depicted in Supplementary Fig. 5a. The excitation 

efficiency is enhanced by an order of magnitude around the defect, in favor of the site-controlled 

excitation of the quantum emitters.  

On the other hand, the Purcell factor describes the decay rate enhancement of spontaneous 

emission from an emitter, ascribed to the modification of its local density of states by 

nanostructures. According to the correspondence between the quantum and classical analyses of 

spontaneous emission2, the decay rate enhancement equals the enhancement of the radiated power 

of the emitter, namely, FP = P/P0; here, P and P0 denote the radiated power of the emitter 

incorporated in our Berry-phase defective PhC and in vacuum, respectively. In the calculation, we 

scan the location of a single electric dipole (at the wavelength of defect mode, λe = 800 nm) in a 

unit cell at the monolayer plane, and record its radiated power P at each position, which is 

normalized by P0 for calculating the Purcell factor. The dipole of both x- and y-orientations are 

implemented, which give the x- and y-polarized Purcell factors (FPx and FPy), respectively. Since 

the valley excitons radiate as in-plane circular dipoles, we define the Purcell factor for the valley 

excitons as 2 2
P Px PyF F F= + , and the calculated results are depicted in Supplementary Fig. 5b. Due 

to the tailored local density of states by the Berry phase defect mode, the emission enhancement 

is mainly achieved around the defect by twenty times. 

The calculated PL enhancement factor (<EF> = η × FP) for the WSe2 monolayer is displayed 

in Supplementary Fig. 5c. The strong PL enhancement around the defect leads to a tailored light-

matter interaction between site-controlled emitters and the Berry phase defect mode. Hence, the 

measured spin-dependent directional emission in momentum space is dominated by emitters close 

to the defects, validating the assumption of dipole emitters at the defect positions in equation (1). 

Other emitters away from the defects mainly radiate to the background field or spin-independent 

directional emission in momentum space. By integrating the PL enhancement factor around the 

nanopillars, we estimate that these emitters only account for 20% of the total PL intensity.  
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Supplementary Fig. 5 | Calculated excitation efficiency, Purcell factor, and PL enhancement 
factor for emitters incorporated in Berry-phase defective PhC. These results are obtained at 1 
nm above the top surface of the nanostructures. Only one unit cell of the structure is shown here 
since similar results can be observed for other unit cells. The contours of the defect and nanopillar 
are highlighted by the green rectangle and cyan quarter circle, respectively. 
 

Section 4:  Raman spectra of WSe2 monolayer 

The highly-crystalline WSe2 monolayer (1 cm × 1 cm), grown by chemical vapor deposition, was 

purchased from 2D Semiconductors. The as-grown WSe2 monolayer uniformly covered a c-cut 

sapphire substrate, and the measured single Raman peak around 250 cm-1 confirms the monolayer 

character (black curve in Supplementary Fig. 6). Subsequently, the monolayer was transferred 

above the Berry-phase defective PhC on the fused silica substrate. After the transfer, the monolayer 

character remains, as confirmed by the stable single Raman peaks (red and blue curves in 

Supplementary Fig. 6). 

 
Supplementary Fig. 6 | Measured Raman spectra of WSe2 monolayer. The as-grown WSe2 on 
the sapphire substrate, transferred WSe2 on the fused silica substrate, and transferred WSe2 on the 
Berry-phase defective PhC are measured. 
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Section 5: Photonic Rashba effect from valley excitons 

The PL scattered from the Berry-phase defective PhC was filtered out by different bandpass filters 

(Supplementary Fig. 7a) and spin-projected in momentum space. Supplementary Figs. 7b-d depict 

the measured PL intensity distributions for the Berry-phase defective PhC (Fig. 3c) covered with 

a WSe2 monolayer under three different wavelengths: 740 nm, 760 nm, and 790 nm. The 

measurements for two opposite spin states (Iσ+ and Iσ-) are displayed by the left and right columns, 

respectively, where the spin-split modes are observed at λ = 760 nm and 790 nm. For wavelengths 

further away from 790 nm, such as λ = 740 nm, no spin-split mode can be observed. This is 

consistent with the measured wavelength range for PL enhancement in the Berry-phase defective 

PhC (Fig. 2c). 

 
Supplementary Fig. 7 | Measured PL intensity distributions in momentum space for Berry-
phase defective PhC covered with a WSe2 monolayer. a, Measured transmission spectra for the 
bandpass filters. The central wavelengths of the BP filters are 700 nm, 720 nm, 740 nm, 760 nm, 
and 790 nm, and their half-maximum bandwidths are 10 nm. b-d, Measured PL intensity 
distributions in momentum space at central wavelengths of λ = 740 nm, 760 nm, and 790 nm, 
respectively. The left and right columns show the measured PL intensity distributions for the σ+ 
and σ- states, respectively. The dashed curves denote calculations based on the spin-orbit 
momentum-matching condition. 
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Section 6: Geometric phase from circular dipole 

To model the interaction between a dipole emitter and the defect lattice (Supplementary Fig. 8a), 
the defects are assumed to behave as perfect polarizers with transmission axes 
ˆ ˆ ˆcos sinn n nθ θ= +P x y following the orientations nθ  of the defects, as validated by the measured 

polarization locking along the defects (Fig. 3b). For a circular dipole of either left (+) or right (-) 

handedness with dipole moment ˆ ˆ= ( )m p i± ±p x y , the emerging phase for its spin-flipped component 

of radiation consists of two parts: geometric phase and dynamic phase; that is, 

g d
ˆ ˆ ˆarg{[( ( ) ) ] } ( ) ( )m

n n n n nφ φ± ⋅ ⋅ = +E r P P σ r r . Here, ( )m
n±E r  is the radiated electric field from the 

left-handed or right-handed circular dipole at the n-th defect location nr ; ˆ ˆ ˆ( ) / 2i=σ x y

  is a 

unit operator that projects the radiation to the spin-flipped state. The dynamic phase due to the 
phase accumulation from the source mp  to the n-th defect equals to the phase for the spin-

maintained component of radiation, that is, d
ˆ ˆ ˆ( ) arg{[( ( ) ) ] }m

n n n nφ ±
±= ⋅ ⋅r E r P P σ . Hence, the 

geometric phase from circular dipole is 

g
ˆ ˆ ˆ ˆˆ ˆ( ) arg{[( ( ) ) ] } arg{[( ( ) ) ] }m m

n n n n n n nφ ±
± ±= ⋅ ⋅ − ⋅ ⋅r E r P P σ E r P P σ . Based on this formula, we 

calculated the geometric phases from both left- and right-handed circular dipoles, and the results 
are in good agreement with the well-known relation g ( ) 2n nφ σθ= −r 3 (Supplementary Fig. 8b). 

 
Supplementary Fig. 8 | Calculated geometric phase from circular dipole. a, Schematic of the 
model. The defects are treated as perfect polarizers following an orientation profile of θ(x,y) = 
πx/6a, as indicated by the cyan bars. b, Calculated geometric phases from left- (red) and right-
handed (blue) circular dipoles along a row of defects (λ = 790 nm). The circles denote the 
calculated values, while the lines denote the theoretical values of g ( ) 2n nφ σθ= −r . 
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Section 7: Spin-split spots from coherent dipole sources 

Due to a lack of strong synchronizing mechanism, such as stimulated emission, quantum emitters 

incorporated in the Berry-phase defective PhCs radiated independently as multiple incoherent 

sources. Consequently, the continuous branches obeying the spin-orbit momentum-matching 

condition 
||

,
eff 0 1 2 s

g h n g h σ= + + +k k G G k  were observed in momentum space (dashed red and 

blue curves in Supplementary Fig. 9). This situation changes when these sources become coherent, 

and the spin-resolved momentum space becomes * 2 2
3 2 Im( ) / (| | | | )x y x yS U U U U= − + , with 

m
x x

m
U U= ∑  and m

y y
m

U U= ∑ ; here, m
xU  and m

yU  are electric field components in momentum 

space for the m-th dipole source that is calculated by equation (1) in the main text. Supplementary 

Fig. 9 shows the calculated 3S  from multiple coherent linear dipole emitters after interacting with 

the Berry-phase defective PhC. It is observed that the continuous branches collapse to discrete 

points, which result from the constructive interferences between these dipole sources. Note that 

two spin-split spots obeying || sσ=k k  appear in this case, as indicated by the red and blue arrows 

in Supplementary Fig. 9. 

 
Supplementary Fig. 9 | Spin-split spots from coherent dipole sources. The structural 
parameters are the same as those in Fig. 3f. The dashed blue and red curves denote calculations 
based on the spin-orbit momentum-matching condition (λ = 760 nm).  
 

Section 8: Photonic Rashba effect from QDs 

For the Berry-phase defective PhC incorporated with QDs (Fig. 4a), we measured the spin-

resolved PL intensity distributions in momentum space under five different wavelengths: 700 nm, 

720 nm, 740 nm, 760 nm, and 790 nm. The measured PL intensity distributions for two opposite 

spin states (Iσ+ and Iσ-) are depicted by the left and middle columns in Supplementary Fig. 10, 
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respectively, while the right column shows the corresponding S3 distributions. The scattered PL at 

each wavelength gives rise to a specific spin-split mode, and the extracted spin-split dispersion 

along ky = 0 manifests as the photonic Rashba effect (Supplementary Fig. 11). 

 
Supplementary Fig. 10 | Measured PL intensity and S3 distributions in momentum space for 
Berry-phase defective PhC incorporated with QDs. a-e correspond to cases with central 
wavelengths of λ = 700 nm, 720 nm, 740 nm, 760 nm, and 790 nm, respectively. The left and 
middle columns show the measured PL intensity distributions for the σ+ and σ- states, respectively, 
while the right column shows the corresponding S3 distributions. The dashed curves denote 
calculations based on the spin-orbit momentum-matching condition. 
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Supplementary Fig. 11 | Extracted spin-split dispersion along ky = 0. Here, a is the lattice 
constant of the square PhC slab (a = 440 nm). 

 

Section 9: Principle of Kagome-hexagonal Berry-phase defective PhC 

Band gap and defect band 

To calculate the band structure for the Kagome-hexagonal Berry-phase defective PhC, Bloch 

boundaries are employed in the x and y directions, and anti-symmetric boundaries are employed 

in the z direction. The unit cell of the simulation structure can be seen in Supplementary Fig. 12b. 

In the simulation, the heights of all the silicon nanostructures (refractive index of 3.4) are H = 300 

nm. The in-plane dimensions of the rectangular nanoantennas are L = 170 nm and W = 70 nm, the 

diameters of the nanopillars are Φ = 90 nm. The refractive index of the surrounding environment 

is set to 1.3, which equals the effective refractive index (neff) used to fit the spin-split mode in Fig. 

4e. Under this circumstance, the Kagome PhC slab also possesses a band gap (gray area in 

Supplementary Fig. 12a) covering the PL wavelengths of QDs (Fig. 4d). Besides, a defect band 

(green dots) emerges in the band gap when space-variant defects are embedded within the PhC 

slab. Note that a similar defect band (orange dots) is observed when defects with the same 

orientation are embedded in the PhC slab, which also implies that the defect band is attributed to 

the subwavelength period of the defect lattice. 

Supplementary Fig. 12b depicts the calculated x-y field distribution at the Γ point of the defect 

band, where the Berry phase defect mode with space-variant local field distributions can also be 

observed. The experimental verification of the strong polarization manipulation in the Kagome-

hexagonal Berry-phase defective PhC can be found in Supplementary Fig. 21a. In addition, the x-

z field distribution reveals that the defect mode mainly resides around the defects for a good 

interaction with the quantum emitters, as shown in Supplementary Fig. 12c. 
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Supplementary Fig. 12 | Band gap and defect band. a, Calculated band structure for Kagome-
hexagonal Berry-phase defective PhC. The green dots denote the defect band. For comparison, the 
defect band (orange dots) for the defective PhC with all the defects possessing the same orientation 
is also shown. The gray area indicates the band gap for the Kagome PhC slab. The inset shows the 
first Brillouin zone of the Kagome PhC slab labelled with high symmetry points. b,c, Electric-
field-intensity distributions of the Berry phase defect mode on the x-y and x-z cross sections, 
respectively. The x-y cross section corresponds to the midplane of the nanostructures, while the 
position of the x-z cross section is marked by a dashed line in b. The simulation wavelength 
corresponds to the Γ point of the defect band, as indicated by a green arrow in a. The orange 
rectangles and cyan circles indicate contours of the nanoantennas and nanopillars, respectively.  

 

Hopping effect and field enhancement 

Similar to Supplementary Fig. 4, we also demonstrated the propagation of photons through 

neighboring defects via hopping in the Kagome-hexagonal Berry-phase defective PhC, whereby 

the Berry phase defect mode is formed (Supplementary Fig. 13a). Likewise, an x-oriented dipole 

(green arrow) is employed to excite the finite Kagome PhC slab (15 × 11 unit cells) embedded 

with six space-variant nanoantennas. In contrast, no hopping effect and Berry phase defect mode 

are observed in the absence of the PhC slab. Moreover, we calculated the field distributions for the 

PhC slab and an isolated nanoantenna under the same excitation condition (Supplementary Fig. 

14a). It is revealed that the weak resonance of the isolated nanoantenna is enhanced by more than 

an order of magnitude when embedded within the PhC slab (Supplementary Fig. 14b). This will 

also lead to site-controlled quantum emitters around the defects by the Purcell effect. The measured 



14 
 

PL enhancement for the Kagome-hexagonal Berry-phase defective PhC (compared to the case of 

a bare QD-doped HSQ film) is depicted in Fig. 4d, where a fivefold enhancement is achieved. 

 
Supplementary Fig. 13 | Hopping effect and Berry phase defect mode. a, Electric-field-
intensity distribution for a finite Kagome PhC slab embedded with space-variant nanoantennas as 
defects. b, Similar to a without the PhC slab. The dipole emitters are indicated by the green arrows. 
These distributions are extracted across the midplane of the nanostructures at the wavelength of 
the defect mode. 
 

 

 
Supplementary Fig. 14 | Intensity enhancement of nanoantenna resonance via Kagome PhC 
slab. a, Electric-field-intensity distributions for the isolated nanoantenna, PhC slab, and defective 
PhC with space-variant defects (one defect along θ = 0 is shown), respectively. These distributions 
are extracted across the midplane of the nanostructures at the wavelength of the defect mode. Only 
one unit cell of the PhC slab is displayed for the last two cases. b, Extracted electric-field-intensity 
profiles along the x direction. These profiles are extracted across the center of the nanoantenna 
from the x-y distributions shown in a. The intensity profile of the isolated nanoantenna is used for 
normalization. 
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Section 10: Photonic Rashba effect from QDs incorporated in Kagome-hexagonal Berry-

phase defective PhC 

The spin-projected measurements were also conducted for the Kagome-hexagonal Berry-phase 

defective PhC incorporated with QDs (Fig. 4c). The measured wavelength-dependent spin-split 

modes for five different wavelengths are displayed in Supplementary Fig. 15. The photonic Rashba 

effect can also be observed in this lattice configuration, as demonstrated by the extracted spin-split 

dispersion along ky = 0 in the main text (Fig. 4f). Furthermore, the calculated spin-split efficiency, 

defined as the intensity ratio ( ) / ( )GMI I I I I+ − + −+ + + , is approximately 50%. Here, I+, I-, and IGM 

are intensities for spin-up mode, spin-down mode, and the corresponding grating mode determined 

by the standard momentum-matching condition, respectively; these intensity values are obtained 

along ky = 0. 
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Supplementary Fig. 15 | Measured PL intensity and S3 distributions in momentum space for 
Kagome-hexagonal Berry-phase defective PhC incorporated with QDs. a-e correspond to 
cases with central wavelengths of λ = 700 nm, 720 nm, 740 nm, 760 nm, and 790 nm, respectively. 
The left and middle columns show the measured PL intensity distributions for the σ+ and σ- states, 
respectively, while the right column shows the corresponding S3 distributions. The dashed curves 
denote calculations based on the spin-orbit momentum-matching condition. 
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Section 11: Chiral modes from conventional GPM without PhC slab 

Compared to GPMs utilizing plane waves4 or surface phonon polariton modes5 as the light sources 

(Supplementary Fig. 20), the heterostructures driven by integrated quantum emitters encounter 

difficulties in achieving geometric phase pickup. Supplementary Fig. 16a depicts the SEM image 

of a conventional GPM incorporated with QDs, and its measured spin-resolved momentum space 

is depicted in Supplementary Fig. 16c (see Supplementary Fig. 17 for more results). It is observed 

that a chiral mode with an inversion-symmetric spin distribution 3 || 3 ||( ) ( )S S− =k k , rather than an 

inversion-asymmetric Rashba-type spin split 3 || 3 ||( ) ( )S S− = −k k , is observed. The same 

phenomenon is also observed from an array of nanoantennas possessing the same orientation (see 

SEM image in Supplementary Fig. 16b and results in Supplementary Fig. 22c). These results 

indicate a negligible geometric phase pickup from anisotropic nanoantennas in the GPM driven by 

integrated quantum emitters. This is further confirmed by the measured inefficient polarization 

manipulation of the scattered PL from the nanoantennas (Supplementary Fig. 21c). Instead, the 

spin split in the chiral mode arises from the chiral near field of the linear dipole emitter6, which 

exhibits a four-lobe pattern with alternating helicities (Supplementary Fig. 16d). This spin 

distribution is remarkable only in the near field and rapidly decays to zero in the far field within 

|| 0| | k≤k . The observable chiral mode is attributed to the discrete near-field sampling by a 

hexagonal lattice (simplified GPM), which enables the spin accumulations at the radiative modes 

satisfying the standard momentum-matching condition 
||

,
eff 0 1 2

g h n g h= + +k k G G , as indicated by 

the dashed curves in Supplementary Fig. 16c.  

The observed chiral mode can be explained via an inefficient interaction between linear dipole 

emitters and a hexagonal lattice, which scatters the dipole emission without polarization 

manipulation. We assume a two-dimensional array of dipoles that share the same locations as those 

of the lattice points at nr ; that is, the dipole 
n

αp  with random in-plane orientation α is placed above 

the n-th lattice point, where n is an integer labelling the dipoles and lattice points. For a single 

dipole emitter 
m

αp , its radiated electric field at the n-th lattice point is , ( )m
n

αE r . The resultant 

electric field in momentum space ,
||( )m αU k  is determined by the coherent addition of the scattered 

light from all the lattice points 
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, ,

||( ) [ ( )]
m m

n
n

α α= ∑U k E r . (S1) 

Consequently, the corresponding spin distribution in momentum space can be obtained as 
, , , * , 2 , 2

3 2 Im( ) / (| | | | )m m m m m
x y x yS U U U Uα α α α α= − + . For multiple independent dipole emitters, the spin-

resolved momentum space is determined by the incoherent addition of individual spin 

distributions, i.e., , , * , 2 , 2
3 2 Im( ) / (| | | | )m m m m

x y x y
m m

S U U U Uα α α α= − +∑ ∑ . Considering the translational 

symmetry of the hexagonal lattice, we calculated only a single linear dipole pα located at one of 

the lattice points. The calculated 3 ||( )S k for fifty random dipole orientations ( (0,2 ]α π∈ ) is shown 

in Supplementary Fig. 16e, in agreement with the measurement (Supplementary Fig. 16c). 

 
Supplementary Fig. 16 | Chiral modes from conventional GPM incorporated with QDs a, 
SEM image of a hexagonal GPM. Its structural parameters are the same as those in Fig. 4c, except 
for the absence of the Kagome PhC slab. b, Similar to a with all the nanoantennas in the same 
orientation θ(x,y) = 0. c, Measured chiral mode in momentum space at λ = 760 nm. The dashed 
black curves denote calculations based on the standard momentum-matching condition. d, 
Calculated S3 distribution of the near field for an x-oriented dipole. The hexagonal lattice (black 
dots) indicates the simplified GPM. e, Calculated chiral mode in momentum space for a linear 
dipole emitter with fifty random orientations. 
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Supplementary Fig. 17 | Measured PL intensity and S3 distributions in momentum space for 
conventional GPM incorporated with QDs. a-c correspond to cases with central wavelengths of 
λ = 740 nm, 760 nm, and 790 nm, respectively. The left and middle columns show the measured 
PL intensity distributions for the σ+ and σ- states, respectively, while the right column shows the 
corresponding S3 distributions. The dashed black curves denote calculations based on the standard 
momentum-matching condition. 
 

Alternatively, due to the C6 rotational symmetry of the hexagonal lattice, the random-oriented 
dipole possesses six primary orientations, which can be further reduced to three (pα, α = 0, π/3, 
2π/3) because two dipoles with opposite orientations give the same spin distribution. The dipole 
emitter with each orientation produces a mirror-image asymmetric spin distribution in momentum 
space, where the mirror axis is perpendicular to (or along) the dipole orientation. Moreover, the 
incoherent addition of the three spin distributions gives rise to a net chiral distribution 
(Supplementary Fig. 18), which also matches with our measurement (Supplementary Fig. 16c). 

 
Supplementary Fig. 18 | Calculated chiral modes in momentum space for linear dipole 
emitter along primary orientations and their incoherent addition. The dipole orientations are 
indicated by the orange arrows. 
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Evolution from chiral mode to photonic Rashba effect 

As demonstrated earlier, the chiral mode and the photonic Rashba effect originate from a weak 

and a strong polarization manipulation of the linear dipole emission by the nanoantennas, 

respectively. Here, we demonstrate the evolution from the chiral mode to the photonic Rashba 

effect by controlling the extinction ratio of the nanoantenna. For convenience, the nanoantennas 

in the GPM are described by an equivalent method of Jones calculus in terms of polarization 

manipulation. The n-th anisotropic nanoantenna with orientation nθ  can be considered as a partial 

polarizer described by the Jones matrix 

 
2

2

1- sin cos sin
cos sin 1- cos

n n n
n

n n n

T
ξ θ ξ θ θ

ξ θ θ ξ θ

 
   
 

. (S2) 

Herein, ξ  is the parameter describing the extinction ratio of the nanoantenna. Specifically, 0ξ   

indicates no polarization manipulation from the nanoantenna, while 1ξ   indicates complete 

polarization manipulation along the nanoantenna’s orientation nθ . For a single dipole emitter mp , 

its radiated in-plane electric field components at the n-th nanoantenna are ( )x
m

nE r  and ( )y
m

nE r . 

The resultant in-plane electric field components ||( )x
mU k  and ||( )y

mU k  in momentum space are 

determined by the coherent addition of the scattered light from all the nanoantennas: 
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Supplementary Fig. 19 depicts the calculated spin-resolved momentum spaces 3 ||( )S k  for different 

values of ξ. It is observed that, for ξ = 0 and ξ = 1, only the chiral mode and the photonic Rashba 

effect are observed, respectively. As for (0,1)ξ  , both the chiral mode and the photonic Rashba 

effect can be observed, and the ratio between them is determined by (1–ξ)/ξ. Hence, there is no 

transition between these two phenomena, and we intentionally use “evolution” to describe this 

process. Moreover, the photonic Rashba effect is not a subset of the chiral mode due to their 

distinct physical mechanisms: the former is due to the Berry phase defect mode generated by the 

space-variant polarization manipulation, while the latter is originated from the chiral near field of 

the linear dipole emitter.  
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Supplementary Fig. 19 | Evolution from chiral mode to photonic Rashba effect. For each value 
of ξ, twelve linear dipole emitters, located at the nanoantenna locations in one unit cell of the GPM, 
are considered. 
 

Measurement for plane-wave illumination 

For comparison, the Kagome-hexagonal Berry-phase defective PhC (Fig. 4c) and hexagonal GPM 

(Supplementary Fig. 16a) were also characterized by on-axis plane waves (λ = 760 nm), and their 

spin-resolved intensity distributions in momentum space are displayed in Supplementary Fig. 20. 

For both structures, we can observe two spots with opposite spin states in the ±1 diffraction order 

(indicated by orange arrows). These spin-split spots stem from an additional momentum acquired 

from the gradient of geometric phase pickup; that is, a g ˆ( , ) [ 2 ( , ) / ]x y x y xφ σ θ= ∇ = − ∂ ∂k x . 

Nevertheless, the GPM shows a negligible geometric phase pickup when interacting with the 

incorporated QDs, due to the weak polarization manipulation of the scattered PL by the 

nanoantennas (Supplementary Fig. 21c). In contrast, the geometric phase-induced Rashba-type 

spin split is observed from the Berry-phase defective PhC (Fig. 4e), wherein the Berry phase defect 

mode enables a strong polarization manipulation of the scattered PL (Supplementary Fig. 21a). 
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Supplementary Fig. 20 | Measured spin-split spots in momentum space under plane-wave 
illumination. a, Hexagonal GPM. b, Kagome-hexagonal Berry-phase defective PhC. The orange 
arrows indicate the ±1 diffraction order. 
 

Measurement for reference structures 

To experimentally verify that the Berry-phase defective PhC enables a strong polarization 

manipulation, we also fabricated reference structures incorporated with QDs (Supplementary Fig. 

21). The schematic in Supplementary Fig. 21a shows a defective PhC with an array of anisotropic 

defects possessing the same orientation. Due to the polarization locking from the coupled defect 

mode, the scattered PL is strongly polarized along the orientation of the defects, that is, x 

polarization, as shown by the measurements in Supplementary Fig. 21a. The measured x- and y-

polarized PL intensity distributions agree with the calculated |Ux|2 and |Uy|2 distributions, 

respectively, by assuming x-polarized dipole emitters in equation (1). This phenomenon 

demonstrates the strong polarization manipulation from anisotropic defects embedded within the 

PhC slab, which plays an essential role in the observed photonic Rashba effect. In contrast, the 

strong polarization manipulation disappears when the anisotropic defects are replaced with 

isotropic ones or the PhC slab is removed (Supplementary Figs. 21b and c). The measured x- and 

y-polarized PL intensity distributions also agree with the calculated |Ux|2 and |Uy|2 distributions, 

respectively, by assuming both x- and y-polarized dipole emitters in equation (S1). 
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Supplementary Fig. 21 | Measured PL intensity distributions in momentum space under 
orthogonal linear polarization states. a, Defective PhC with an array of anisotropic defects 
possessing the same orientation θ(x,y) = 0. b, Defective PhC with an array of isotropic defects. c, 
Similar to a without the PhC slab. The left column shows the schematics of the reference 
structures; the middle and right columns show the y- and x-polarized PL intensity distributions in 
momentum space, respectively. The central wavelengths for the three cases are 760 nm. The 
dashed black curves denote calculations based on the standard momentum-matching condition. 
 

Due to the distinct polarization manipulation abilities of the three configurations, different spin-

enabled phenomena are observed in momentum space (Supplementary Fig. 22). Although the 

anisotropic defects embedded within the PhC slab enable a strong polarization manipulation of the 

scattered PL along the x direction, no spin-split phenomenon is observed due to the absence of 

space-variant variations (Supplementary Fig. 22a). The chiral modes are observed for the other 

two cases: the defective PhC with isotropic defects and the isolated nanoantenna array 

(Supplementary Figs. 22b and c). These chiral modes can also be explained via an inefficient 

interaction between the chiral near field of linear dipole emitter and a hexagonal lattice. Note that, 

due to a weak anisotropic excitation of the x- and y-polarized linear dipoles (px : py = 1 : 0.75), the 

chiral mode in Supplementary Fig. 22c is slightly different from the expected one, such as that in 

Supplementary Fig. 16e. 
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Supplementary Fig. 22 | Measured S3 distributions in momentum space. a-c correspond to the 
three configurations shown in Supplementary Figs. 21a-c, respectively. The central wavelengths 
for the three cases are 760 nm, 720 nm, and 760 nm, respectively. The dashed black curves denote 
calculations based on the standard momentum-matching condition. 
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